LDO开发完全手册-原理分析及应用总结

低压差线性电源(LDO)是什么?

LDO是线性电源的一种,它的英文全称是Low Dropout Regulator,是指输入电压与输出电压之差很小,且输出电流很小的线性电源。

           

           


基本原理:

LDO的工作原理基于一个控制回路,它监测输出电压并与参考电压进行比较。如果输出电压低于参考电压,控制回路会调整调节器件的工作状态,使其输出电压增加。相反,如果输出电压高于参考电压,调节器件会减少输出电压。这种反馈机制使得LDO能够维持稳定的输出电压。


           

具体案例:

低压差线性稳压器(LDO)的基本电路如下所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。

对此的理解:稳压管为运放反向端提供稳定的参考电压Uref, 输出端通过R2的分压提供运放同相端的电压。当输出电压过高时,同相端电压值大于反向端参考,输出为正值,因此三极管截止,Uout下降。当输出电压Uout过低时,同相端电压值小于反向端参考,输出为负值,因此三极管导通,Uout上升。因此,稳压电路就是通过这种机制不断调节输出电压,使其保持稳定。

           

取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压 Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。

           

运放负端提供稳定的电压,运放正端通过输出电压由电阻网络分压得到。但输出电压高时,运放正端电压也高,比负端值大,运放输出为正,MOS管截止,OUT输出降低;当输出电压低时,运放正端电压也低,比负端值小,运放输出为负,MOS管导通,OUT输出升高。稳压芯片就是通过这种机制不断调整输出电压,使其稳定的。

 


         

最为经典的LDO芯片---LM1117的芯片内部结构图

           

Die of the LM1117 low-dropout (LDO) linear voltage regulator

 


LM1117的介绍

800mA LOW DROPOUT VOLTAGE REGULATOR

           

1117的结构框图

参考电压源:LM1117内部集成了一个参考电压源,用于产生稳定的参考电压。这个参考电压源通常采用基准电压源和放大电路组成。

           

误差放大器:LM1117内部包含一个误差放大器,用于比较输入电压和参考电压,产生误差信号。误差放大器通常采用差分放大器的结构。

           

错误放大器驱动器:误差放大器的输出信号经过错误放大器驱动器进行放大,驱动电源输出级。

           

输出级:输出级由错误放大器驱动,负责调节输入电压,使其稳定在设定的输出电压。输出级通常由功率晶体管、电流限制电路和反馈电路组成。

 


         

LDO的优缺点分析:

LDO的主要优点是其稳定性和低噪声性能。由于LDO使用线性调节器件,它可以提供精确的输出电压,通常具有较低的输出纹波和噪声。此外,LDO还具有快速的响应速度和较高的负载能力。  

           

           

然而,LDO也存在一些限制。首先,由于LDO是通过线性调节器件进行电压降低,它的效率相对较低。其次,LDO对输入电压的差异较为敏感,因此输入电压必须在规定范围内。此外,LDO还需要一定的输入-输出差异电压,这可能导致较大的功耗。


LDO总结:

LDO是一种基于线性电源原理的低压差电源,它具有体积小、价格低、稳定、低噪声、低温漂、高精度等优点,适用于需要小功率、低噪声、低温漂的电子设备中。

但是,它的响应速度较慢,压降较大,因此不太适用于需要大功率、快速响应的电子设备中。

           

         

本文使用 文章同步助手 同步

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容