癌症分子亚型的聚类

通过查看基于表达丰度进行癌症分子亚型聚类的文献中相关的部分,并进行学习,将相关方法应用于George的数据。

2020-European Urology-Identification of Differential Tumor Subtypes of T1 Bladder Cancer(待进行聚类数的确定和Marker/differentially expressed基因的筛选)

image.png

01.文献方法部分的阅读:

总概:确定聚类数与不同类中的样品组成>得到marker/differentially expressed基因

image.png

01.确定聚类数

Features的选择:log10转化的、以均值为中心的2945个蛋白编码基因的FPKM谱,这些基因的FPKM标准差高于所有基因标准差的85th。

工具:ConsensusClusterPlus 。

流程/具体参数:

①通过组合clusterAlg和distance两个参数变量(ConsensusClusterPlus R包中的变量),并评估结果进行选择,选择出3个聚类的结果(具体参数:a- 3 clusters: Pearson, PAM, fItem = 0.85, reps = 20,000; b- 4 clusters: Pearson, k-means, fItem = 0.875, reps = 5000; c- 5 clusters: Spearman, PAM, fItem = 0.875, reps = 50,000。 )

②进行病人样品生存分析,在三个结果中确定一个最优的分类。

③文章进一步鉴定了核心样品和非核心样品。

02.Marker/differentially expressed基因的筛选

[图片上传失败...(image-48153-1637819437099)]
工具:edgeR

流程:通过edgeR/FC进行不同亚型间差异基因的计算

02.流程的应用

01.流程的开展

library(CancerSubtypes)
library(ComplexHeatmap)
(.packages())
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2020-EBioMedicine-Identification")
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt",header = T,sep = "\t")

library(ConsensusClusterPlus)

#01.features的选择
#按标准差选择出变化最大的前25%基因
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_85<-George_FPKM_sd[George_FPKM_sd$sd_value>quantile(George_FPKM_sd$sd_value,0.85),]
George_FPKM_85<-George_FPKM[rownames(George_FPKM_sd_85),]
#对基因进行log10转化后进行中心化
George_FPKM_85_log<-log10(George_FPKM_85+1)
George_FPKM_85_log10_scaled<-t(scale(t(George_FPKM_85_log)))

#02.使用ConsensusClusterPlus进行聚类,选用不同的distances和clusterAlg参数进行组合。
distances_value<-c("pearson", "spearman", "euclidean", "binary", "maximum", "canberra", "minkowski")
clusterAlg_value<-c("hc","pam","km")
for(i in distances_value){
  for(j in clusterAlg_value){
    file_name<-paste("George_FPKM_85_log10_scaled",i,j,sep="_")#文件夹名称的设置
    assign(file_name,ConsensusClusterPlus(George_FPKM_85_log10_scaled,#生成相关文件夹
                                          maxK=10,#设置最大聚类的类数
                                          reps=20000,#重复次数
                                          distance=i,#距离计算方法
                                          clusterAlg=j,
                                          title=file_name,
                                          plot= 'png',
                                          writeTable=T))
  }
}


image.png

distances和clusterAlg参数图片红字中最后两部分。根据软件运行提示,km参数只能与euclidean联用,所以km与其他参数的组合结果实际应该为km参数与euclidean参数联用的结果。根据肉眼对所有的聚类结果进行观测,在K=3或K=4时有着较明确的类群之间的界限。

02.总结

文章对癌症的亚型聚类亚型marker鉴定分开的。文章先是进行聚类获得亚型后,再在亚型之间进行marker基因的鉴定。

文章首先进行了一致性聚类。在此阶段,文章组合使用了ConsensusClusterPlus 工具中lusterAlg和distance两个参数变量,得到了三个人工筛选后的结果,之后,进一步使用生存分析,确定其中一个结果用于后续分析。而用于聚类的基因,文章较为直接,使用的是变化top25%的基因。

之后,文章在获得亚型分类和亚型中样品归属的情况下,进行差异表达基因的分析,鉴定出亚型特异性的基因类群。

目前,通过相同方法,在George的样本中进行了聚类实验。依据聚类结果(排除个人认为较差的结果后),大部分结果在K=3、K=4时,亚型间差异性较明显(如George_FPKM_85_log10_scaled_spearman_pam、George_FPKM_85_log10_scaled_pearson_pam、George_FPKM_85_log10_scaled_pearson等)


image.png

03.根据个人判定出较优的聚类结果分析是否存在与一些SCLC marker基因的联动

library(CancerSubtypes)
library(ComplexHeatmap)
(.packages())
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2020-EBioMedicine-Identification")
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt",header = T,sep = "\t")

library(ConsensusClusterPlus)

#01.features的选择
#按标准差选择出变化最大的前25%基因
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_85<-George_FPKM_sd[George_FPKM_sd$sd_value>quantile(George_FPKM_sd$sd_value,0.85),]
George_FPKM_85<-George_FPKM[rownames(George_FPKM_sd_85),]
#对基因进行log10转化后进行中心化
George_FPKM_85_log<-log10(George_FPKM_85+1)
George_FPKM_85_log10_scaled<-George_FPKM_85_log
for(i in colnames(George_FPKM_85_log)){
  median_tmp<-median(George_FPKM_85_log[,i])
  George_FPKM_85_log10_scaled[,i]<-George_FPKM_85_log[,i]-median_tmp
}
George_FPKM_85_log10_scaled<-as.matrix(George_FPKM_85_log10_scaled)

#02.使用ConsensusClusterPlus进行聚类,选用不同的distances和clusterAlg参数进行组合。
distances_value<-c("pearson", "spearman", "euclidean", "binary", "maximum", "canberra", "minkowski")
clusterAlg_value<-c("hc","pam","km")
for(i in distances_value){
  for(j in clusterAlg_value){
    file_name<-paste("George_FPKM_85_log10_scaled",i,j,sep="_")#文件夹名称的设置
    assign(file_name,ConsensusClusterPlus(George_FPKM_85_log10_scaled,#生成相关文件夹
                                          maxK=10,#设置最大聚类的类数
                                          reps=20000,#重复次数
                                          distance=i,#距离计算方法
                                          clusterAlg=j,
                                          title=file_name,
                                          plot= 'png',
                                          writeTable=T))
  }
}


library(ComplexHeatmap)
library("stringr")
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2020-EBioMedicine-Identification")
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/00.patients/George_2015_sum_FPKM.txt",header = T,sep = "\t")


#读取文件夹名称
file_names = list.files(pattern = "George_FPKM_85_log")   
#遍历文件夹,生成图片
for(i in file_names){#遍历文件夹
  for(j in 2:10){#遍历文件夹下需要的文件
    file_name_pre<-paste(i,".k=",j,sep="")#设置生成图片的前缀
    K_names<-paste("k=",j,sep="")#获得K值
    file_names1<-paste(i,K_names,"consensusClass.csv",sep=".")#设置consensusClass.csv名称
    file_names2<-paste(i,K_names,"consensusMatrix.csv",sep=".")#设置consensusMatrix.csv名称
    file_class<-paste(i,file_names1,sep="/")#设置路径+consensusClass.csv名称
    class<-read.table(file_class,sep = ",")#读取consensusClass.csv文件
    file_consensusMatrix<-paste(i,file_names2,sep="/")#设置路径+consensusMatrix.csv名称
    consensusMatrix<-read.table(file_consensusMatrix,header = T,sep=",")#读取consensusMatrix.csv文件
    consensusMatrix<-consensusMatrix[,-1]
    colnames(consensusMatrix)<-class[,1]
    rownames(consensusMatrix)<-class[,1]
    
    class1<-class[order(class$V2),]#按聚类结果进行排序
    George_FPKM<-George_FPKM[,class1[,1]]#表达丰度数据的colnames也按聚类结果进行排序
    
    #设置Markers
    Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM["NEUROD1",]))
    Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM["NEUROD2",]))
    Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM["NEUROD4",]))
    Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM["NOTCH1",]))
    Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM["NOTCH2",]))
    Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM["NOTCH3",]))
    Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM["NOTCH4",]))
    Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM["POU2F3",]))
    Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM["ASCL1",]))
    Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM["YAP1",]))
    Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM["MYC",]))
    Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM["CALCA",]))
    Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM["UCHL1",]))
    Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM["INSM1",]))
    Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM["SCG2",]))
    Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM["REST",]))
    Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM["CDH5",]))
    Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM["EZH2",]))
    Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM["CD44",]))
    Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM["EPCAM",]))
    Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM["HES1",]))
    Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM["DDC",]))
    Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM["CLDN4",]))
    Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM["GRP",]))
    Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM["CHGA",]))
    Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM["CALCB",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM["NCAM1",]))
    Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM["CHGB",]))
    Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM["SYP",]))
    Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM["TTF1",]))
    Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM["ATOH1",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM["NCAM1",]))
    Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM["CD24",]))
    Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM["CADM1",]))
    Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM["ALCAM",]))
    Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM["CD151",]))
    Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM["EPHA2",]))
    
    Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM["NIPAL4",]))
    #设置marker在热图中的注释
    ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                           NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                           NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                           NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                           NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                           NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                           HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                           YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                           REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                           #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                           CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                           POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                           MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                           
                           INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                           SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                           GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                           ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                           DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                           CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                           CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                           CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                           UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                           CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                           EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                           CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                           SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                           TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                           ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                           CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                           ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                           CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                           EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                           NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                           
                           annotation_height = c(rep(1,35)))
    
    #对聚类结果文件进行排序
    for(m in rownames(consensusMatrix)){
      consensusMatrix[m,]<-as.numeric(consensusMatrix[m,])
    }
    consensusMatrix<-consensusMatrix[class1$V1,class1$V1]
    
    png.names<-paste(file_name_pre,"png",sep=".")#设置生成图片名称
    D_F<-paste(i,png.names,sep="/")#设置路径+名称
    consensusMatrix_heatmap<-Heatmap(consensusMatrix,cluster_rows = F,cluster_columns = F,bottom_annotation=ha,show_column_names=F)#绘制热图
    png(filename = D_F,width=1200,height = 1900)#生成图片
    print(consensusMatrix_heatmap)
    dev.off()
  }}

2021-Cancer Cell-Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities

image.png

01.文献方法部分的阅读

image.png

总概:确定聚类数与不同类中的样品组成>得到marker/differentially expressed基因

01.确定聚类数

Features的选择:双峰指数≥1.5,平均表达值≥25th,sd value≥50th。

聚类工具/方法:NMF

流程/具体参数:

①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。

②进行NMF聚类,使用cophenetic correlation coefficient maximization进行确定聚类数。但K=3与K=4下的评价几乎一样,进而都用于后续分析,在后续分析中进行人工筛选确定。

02.Marker基因的筛选

工具/方法:glmnet

其他:此外文章检测了亚型特异性的marker基因:使用glmnet来进行。①筛选最优的alpha和features。②确定markers:使用glmet采用惩罚极大似然法拟合广义线性模型。

而文章中的差异表达基因是通过NMF进行的。

相关知识阅读:

Lasso:

通过构建模型来预测数据的分类

https://cloud.tencent.com/developer/article/1621581

https://www.biowolf.cn/m/view.php?aid=326

https://www.zsccy.xyz/post/2018-09-13-glmnet1/

NMF:

https://zhuanlan.zhihu.com/p/22043930

https://cloud.tencent.com/developer/article/1806266

https://blog.csdn.net/weixin_39595008/article/details/111579636

//www.greatytc.com/p/f5cbbe771ce2

02.流程的应用

表达量的处理对后续分析有着较大的影响。


image.png

首先在表达量的处理过程中,文章提及是使用log2进行了转化,但是具体是log2(expression+1)还是仅仅log2(expression)没有提及(上图),但是由于NMF对数据要求是>0,所以这边使用log2(expression+1)进行。除此之外,文章还提及Byers 2012的文章,在该文章中,对基因表达数据进行了normalization(使用的方法是分位数标准化法,下图),但Gay 2021没明确是否有进行此步骤。所以下面的应用分多种情况进行:①不进行分位数标准化的流程应用;进行分位数标准化的应用;③不进行log2转化且不进行分位数标准化的流程应用;④进行分位数标准化并将标准化步骤调整至筛选获得基因后的应用。


image.png

01.流程的开展

①不进行分位数标准化的流程应用:
library(BimodalIndex)
library(NMF)
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")
#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
#计算平均值,并获得means >=25th的基因名
George_FPKM<-log2(George_FPKM+1)
George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得sd>=50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd>=50th的基因名和means>=25th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]


#NMF的运算过程由文章释放的code中获得,但仅仅就只有很小的以部分
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=200 ,.options='vt')
  hm <- consensusmap(res)
}

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=50, seed=123456)

plot(estim.r)


依据结果(本地化运行1),最优的聚类数应该为3,与文章结果描述中出现最优聚类数同时为3/4不同。可能是文章采取了分位数标准化?下面试一下分位数标准化后数据的应用,看是否能有类似与文章的结果。


image.png
image.png
image.png
②进行分位数标准化的应用
library(BimodalIndex)
library(NMF)
library("preprocessCore")

#read the FPKM values from George 2015.
George_FPKM<-read.table("George_2015_sum_FPKM.txt")

#normalization based upon quantiles using preprocessCore package
George_FPKM<-as.matrix(George_FPKM)
George_FPKM<-normalize.quantiles(George_FPKM,keep.names=T)

#calculating the bimodal index, mean FPKM value, stand deviation value across samples of genes. then the genes with bimodal index ≥ 1.5, mean FPKM value ≥ 25th and stand deviation value ≥ 50th were retained. 
##calculating mean FPKM value of genes across samples and get gene names of genes with the mean FPKM value ≥ 25th
George_FPKM<-log2(George_FPKM+1)
George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])

##calculating stand deviation value of genes across samples and get gene names of genes with the stand deviation value ≥ 50th
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#obtain intersection names
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)

#calculating the bimodal index value and get gene names of genes with the bimodal index value > 1.5 from intersection genes
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])

#obtaining the FPKM value of genes with bimodal index ≥ 1.5, mean FPKM value ≥ 25th and stand deviation value ≥ 50th
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]

dim(George_FPKM_filtered)

#running NMF
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=200 ,.options='vt')
  hm <- consensusmap(res)
}
estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=50, seed=123456)
plot(estim.r)

依据结果(本地化运行2),最优的聚类数仍应该为2,与文章结果描述中出现最优聚类数同时为3/4不同。进一步猜测是否有可能文章没有使用log2对表达量进行转化,以下开展不进行log2转化的本地化运行3。

image.png
③不进行log2转化且不进行分位数标准化的流程应用:
library(BimodalIndex)
library(NMF)
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")
#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
#计算平均值,并获得means >=25th的基因名

George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得sd>=50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd>=50th的基因名和means>=25th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]
dim(George_FPKM_filtered)

#NMF的运算过程由文章释放的code中获得,但仅仅就只有很小的一部分,且没有相关注释文件
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=200 ,.options='vt')
  hm <- consensusmap(res)
}

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=50, seed=123456)

plot(estim.r)


依据结果(本地化运行3),最优的聚类数仍应该为2,与文章结果描述中出现最优聚类数同时为3/4不同。在经过三次不同猜测下的运行,仍与文章结果相差较远,猜测可能是源数据差异、R包版本,或者是标准化步骤开展位置的问题,下面将标准化步骤进行调整,进行一次运行。

image.png
④进行分位数标准化并将标准化步骤调整至筛选获得基因后的应用
library(BimodalIndex)
library(NMF)

library("preprocessCore")
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")


#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
#计算平均值,并获得means≥25th的基因名
George_FPKM<-log2(George_FPKM+1)
George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得前sd 50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd 25th的基因名和means前50th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]
#查看基因数量
dim(George_FPKM_filtered)

#使用preprocessCore进行分位数标准化
George_FPKM_filtered<-as.matrix(George_FPKM_filtered)
George_FPKM_filtered<-normalize.quantiles(George_FPKM_filtered,keep.names=T)

#NMF的运算过程由文章释放的code中获得,但仅仅就只有很小的以部分
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=200 ,.options='vt')
  hm <- consensusmap(res)
}

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=50, seed=123456)

plot(estim.r)

依据结果(本地化运行4),最优的聚类数应该为3/4,与文章结果描述中出现最优聚类数同时为3/4相似,但在整个折线图仍有着差异(k=6)。

image.png

02.总结

文章对癌症的亚型聚类亚型marker鉴定分开的。文章先是进行聚类获得亚型后,再在亚型之间进行marker基因的鉴定。

文章首先进行了NMF聚类。在此阶段,文章使用NMF聚类后,认为K=3或K=4的时候为同时最优,之后通过其他分析和认为判定,选取K=4。用于聚类的基因,文章文章的限定条件包括双峰指数、平均表达值、标准差。

之后,文章在获得亚型分类和亚型中样品归属的情况下,进行marker基因的鉴定,鉴定出亚型特异性的基因类群。

目前,通过相同方法,在George的样本中进行了聚类实验。因为文章中对表达数据处理和聚类分析的描述并不是特别的详细(特别是在表达数据处理部分),有部分过程需要进行猜测。最后在 本地化运行4 中获得了与文章中描述的”最优同时为3/4“,但整个折线图仍有差异。其他三次运行结果中,有两次最优为K=2,一次最优为K=3(依据cophenetic值的大小进行判断)。而我同时看到有人进行最优K值的判断是当cophenetic开始下降或者下降最大前的K为最优的K。

03.根据个人判定出较优的聚类结果分析是否存在与一些SCLC marker基因的联动

1-

library(BimodalIndex)
library(NMF)
library(ComplexHeatmap)
library("stringr")
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")
#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
George_FPKM1<-George_FPKM
#计算平均值,并获得means >=25th的基因名
George_FPKM<-log2(George_FPKM+1)
George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得sd>=50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd>=50th的基因名和means>=25th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
#774
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=1000, seed=123456)
png("1-estim.r.plot.png",width=500,height = 500)
plot(estim.r)
dev.off()

#
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=1000 ,.options='vt')
  consensusmap_name<-paste("1-k=",ik," consensusmap.png",sep="")
  png(consensusmap_name,width=500,height = 500)
  consensusmap(res)
  dev.off()
  #获得分组信息
  group<-predict(res,what="chc")
  group_names<-paste("1-k=",ik,"group.txt",sep=".")
  write.table(group,group_names,sep="\t")
  sorted_group<-names(sort(group))
  George_FPKM1<-George_FPKM1[,sorted_group]#表达丰度数据的colnames也按聚类结果进行排序
  #设置Markers
  Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
  Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
  Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
  Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
  Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
  Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
  Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
  Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
  Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
  Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
  Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
  Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
  Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
  Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
  Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
  Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
  Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
  Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
  Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
  Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
  Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
  Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
  Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
  Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
  Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
  Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
  Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
  Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
  Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
  Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
  Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
  Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
  Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
  
  Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
  #设置marker在热图中的注释
  ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                         NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                         NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                         NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                         NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                         NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                         HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                         YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                         REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                         #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                         CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                         POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                         MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                         
                         INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                         SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                         GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                         ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                         DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                         CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                         CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                         CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                         UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                         CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                         EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                         CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                         SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                         TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                         ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                         CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                         ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                         CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                         EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                         NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                         
                         annotation_height = c(rep(1,35)))
  #对聚类结果文件进行排序
  sorted_consensus<-res@consensus[sorted_group,sorted_group]
  res_consensus1<-sorted_consensus
  sorted_consensus_names<-paste("1-1res_ik=",ik,"consensus.txt",sep=".")
  write.table(res_consensus1,sorted_consensus_names,sep="\t")
  consensusMatrix_heatmap<-Heatmap(sorted_consensus,
                                   cluster_rows = F,
                                   cluster_columns = F,
                                   bottom_annotation=ha,
                                   show_column_names=F)#绘制热图
  png.names<-paste("1-k=",ik,"png",sep=".")#设置生成图片名称
  png(filename = png.names,width=1200,height = 1900)#生成图片
  print(consensusMatrix_heatmap)
  dev.off()
}


#并进行一致性聚类
library(ConsensusClusterPlus)
distances_value<-c("pearson", "spearman", "euclidean", "binary", "maximum", "canberra", "minkowski")
clusterAlg_value<-c("hc","pam","km")
George_FPKM_filtered<-as.matrix(George_FPKM_filtered)
for(i in distances_value){
  for(j in clusterAlg_value){
    file_name<-paste("1-George_FPKM_filtered",i,j,sep="_")#文件夹名称的设置
    assign(file_name,ConsensusClusterPlus(George_FPKM_filtered,#生成相关文件夹
                                          maxK=10,#设置最大聚类的类数
                                          reps=20000,#重复次数
                                          distance=i,#距离计算方法
                                          clusterAlg=j,
                                          title=file_name,
                                          plot= 'png',
                                          writeTable=T))
  }
}

#读取文件夹名称
file_names = list.files(pattern = "1-George_FPKM_filtered")   
#遍历文件夹,生成图片
for(i in file_names){#遍历文件夹
  for(j in 2:10){#遍历文件夹下需要的文件
    file_name_pre<-paste(i,".k=",j,sep="")#设置生成图片的前缀
    K_names<-paste("k=",j,sep="")#获得K值
    file_names1<-paste(i,K_names,"consensusClass.csv",sep=".")#设置consensusClass.csv名称
    file_names2<-paste(i,K_names,"consensusMatrix.csv",sep=".")#设置consensusMatrix.csv名称
    file_class<-paste(i,file_names1,sep="/")#设置路径+consensusClass.csv名称
    class<-read.table(file_class,sep = ",")#读取consensusClass.csv文件
    file_consensusMatrix<-paste(i,file_names2,sep="/")#设置路径+consensusMatrix.csv名称
    consensusMatrix<-read.table(file_consensusMatrix,header = T,sep=",")#读取consensusMatrix.csv文件
    consensusMatrix<-consensusMatrix[,-1]
    colnames(consensusMatrix)<-class[,1]
    rownames(consensusMatrix)<-class[,1]
    
    class1<-class[order(class$V2),]#按聚类结果进行排序
    George_FPKM1<-George_FPKM1[,class1[,1]]#表达丰度数据的colnames也按聚类结果进行排序
    
    #设置Markers
    Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
    Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
    Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
    Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
    Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
    Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
    Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
    Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
    Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
    Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
    Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
    Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
    Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
    Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
    Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
    Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
    Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
    Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
    Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
    Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
    Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
    Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
    Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
    Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
    Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
    Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
    Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
    Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
    Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
    Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
    Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
    Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
    Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
    
    Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
    #设置marker在热图中的注释
    ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                           NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                           NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                           NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                           NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                           NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                           HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                           YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                           REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                           #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                           CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                           POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                           MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                           
                           INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                           SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                           GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                           ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                           DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                           CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                           CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                           CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                           UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                           CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                           EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                           CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                           SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                           TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                           ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                           CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                           ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                           CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                           EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                           NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                           
                           annotation_height = c(rep(1,35)))
    
    #对聚类结果文件进行排序
    for(m in rownames(consensusMatrix)){
      consensusMatrix[m,]<-as.numeric(consensusMatrix[m,])
    }
    consensusMatrix<-consensusMatrix[class1$V1,class1$V1]
    
    png.names<-paste(file_name_pre,"png",sep=".")#设置生成图片名称
    D_F<-paste(i,png.names,sep="/")#设置路径+名称
    consensusMatrix_heatmap<-Heatmap(consensusMatrix,cluster_rows = F,cluster_columns = F,bottom_annotation=ha,show_column_names=F)#绘制热图
    png(filename = D_F,width=1200,height = 1900)#生成图片
    print(consensusMatrix_heatmap)
    dev.off()
  }}


image.png

2-

rm(list=ls())
library("preprocessCore")
library(BimodalIndex)
library(NMF)
library(ComplexHeatmap)
library("stringr")
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")
#使用preprocessCore进行分位数标准化
George_FPKM<-as.matrix(George_FPKM)
George_FPKM<-normalize.quantiles(George_FPKM,keep.names=T)

#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
George_FPKM1<-George_FPKM
#计算平均值,并获得means >=25th的基因名
George_FPKM<-log2(George_FPKM+1)
George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得sd>=50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd>=50th的基因名和means>=25th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
#774
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=1000, seed=123456)
png("2-estim.r.plot.png",width=500,height = 500)
plot(estim.r)
dev.off()

#
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=1000 ,.options='vt')
  consensusmap_name<-paste("2-k=",ik," consensusmap.png",sep="")
  png(consensusmap_name,width=500,height = 500)
  consensusmap(res)
  dev.off()
  #获得分组信息
  group<-predict(res)
  sorted_group<-names(sort(group))
  George_FPKM1<-George_FPKM1[,sorted_group]#表达丰度数据的colnames也按聚类结果进行排序
  #设置Markers
  Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
  Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
  Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
  Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
  Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
  Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
  Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
  Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
  Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
  Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
  Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
  Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
  Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
  Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
  Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
  Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
  Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
  Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
  Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
  Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
  Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
  Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
  Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
  Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
  Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
  Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
  Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
  Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
  Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
  Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
  Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
  Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
  Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
  
  Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
  #设置marker在热图中的注释
  ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                         NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                         NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                         NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                         NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                         NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                         HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                         YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                         REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                         #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                         CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                         POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                         MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                         
                         INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                         SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                         GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                         ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                         DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                         CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                         CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                         CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                         UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                         CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                         EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                         CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                         SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                         TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                         ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                         CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                         ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                         CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                         EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                         NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                         
                         annotation_height = c(rep(1,35)))
  #对聚类结果文件进行排序
  sorted_consensus<-res@consensus[sorted_group,sorted_group]
  
  consensusMatrix_heatmap<-Heatmap(sorted_consensus,
                                   cluster_rows = F,
                                   cluster_columns = F,
                                   bottom_annotation=ha,
                                   show_column_names=F)#绘制热图
  png.names<-paste("2-k=",ik,"png",sep=".")#设置生成图片名称
  png(filename = png.names,width=1200,height = 1900)#生成图片
  print(consensusMatrix_heatmap)
  dev.off()
}


#并进行一致性聚类
library(ConsensusClusterPlus)
distances_value<-c("pearson", "spearman", "euclidean", "binary", "maximum", "canberra", "minkowski")
clusterAlg_value<-c("hc","pam","km")
George_FPKM_filtered<-as.matrix(George_FPKM_filtered)
for(i in distances_value){
  for(j in clusterAlg_value){
    file_name<-paste("2-George_FPKM_filtered",i,j,sep="_")#文件夹名称的设置
    assign(file_name,ConsensusClusterPlus(George_FPKM_filtered,#生成相关文件夹
                                          maxK=10,#设置最大聚类的类数
                                          reps=20000,#重复次数
                                          distance=i,#距离计算方法
                                          clusterAlg=j,
                                          title=file_name,
                                          plot= 'png',
                                          writeTable=T))
  }
}

#读取文件夹名称
file_names = list.files(pattern = "2-George_FPKM_filtered")   
#遍历文件夹,生成图片
for(i in file_names){#遍历文件夹
  for(j in 2:10){#遍历文件夹下需要的文件
    file_name_pre<-paste(i,".k=",j,sep="")#设置生成图片的前缀
    K_names<-paste("k=",j,sep="")#获得K值
    file_names1<-paste(i,K_names,"consensusClass.csv",sep=".")#设置consensusClass.csv名称
    file_names2<-paste(i,K_names,"consensusMatrix.csv",sep=".")#设置consensusMatrix.csv名称
    file_class<-paste(i,file_names1,sep="/")#设置路径+consensusClass.csv名称
    class<-read.table(file_class,sep = ",")#读取consensusClass.csv文件
    file_consensusMatrix<-paste(i,file_names2,sep="/")#设置路径+consensusMatrix.csv名称
    consensusMatrix<-read.table(file_consensusMatrix,header = T,sep=",")#读取consensusMatrix.csv文件
    consensusMatrix<-consensusMatrix[,-1]
    colnames(consensusMatrix)<-class[,1]
    rownames(consensusMatrix)<-class[,1]
    
    class1<-class[order(class$V2),]#按聚类结果进行排序
    George_FPKM1<-George_FPKM1[,class1[,1]]#表达丰度数据的colnames也按聚类结果进行排序
    
    Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
    Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
    Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
    Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
    Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
    Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
    Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
    Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
    Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
    Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
    Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
    Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
    Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
    Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
    Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
    Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
    Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
    Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
    Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
    Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
    Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
    Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
    Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
    Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
    Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
    Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
    Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
    Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
    Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
    Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
    Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
    Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
    Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
    
    Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
    #设置marker在热图中的注释
    ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                           NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                           NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                           NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                           NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                           NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                           HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                           YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                           REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                           #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                           CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                           POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                           MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                           
                           INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                           SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                           GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                           ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                           DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                           CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                           CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                           CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                           UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                           CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                           EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                           CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                           SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                           TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                           ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                           CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                           ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                           CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                           EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                           NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                           
                           annotation_height = c(rep(1,35)))
    
    #对聚类结果文件进行排序
    for(m in rownames(consensusMatrix)){
      consensusMatrix[m,]<-as.numeric(consensusMatrix[m,])
    }
    consensusMatrix<-consensusMatrix[class1$V1,class1$V1]
    
    png.names<-paste(file_name_pre,"png",sep=".")#设置生成图片名称
    D_F<-paste(i,png.names,sep="/")#设置路径+名称
    consensusMatrix_heatmap<-Heatmap(consensusMatrix,cluster_rows = F,cluster_columns = F,bottom_annotation=ha,show_column_names=F)#绘制热图
    png(filename = D_F,width=1200,height = 1900)#生成图片
    print(consensusMatrix_heatmap)
    dev.off()
  }}

3-
rm(list=ls())
library("preprocessCore")
library(BimodalIndex)
library(NMF)
library(ComplexHeatmap)
library("stringr")
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")
#使用preprocessCore进行分位数标准化
George_FPKM<-as.matrix(George_FPKM)


#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
George_FPKM1<-George_FPKM
#计算平均值,并获得means >=25th的基因名

George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得sd>=50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd>=50th的基因名和means>=25th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
#774
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=1000, seed=123456)
png("2-estim.r.plot.png",width=500,height = 500)
plot(estim.r)
dev.off()

#
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=1000 ,.options='vt')
  consensusmap_name<-paste("3-k=",ik," consensusmap.png",sep="")
  png(consensusmap_name,width=1000,height = 1000)
  consensusmap(res)
  dev.off()
  #获得分组信息
  group<-predict(res)
  sorted_group<-names(sort(group))
  George_FPKM1<-George_FPKM1[,sorted_group]#表达丰度数据的colnames也按聚类结果进行排序
  #设置Markers
  Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
  Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
  Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
  Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
  Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
  Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
  Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
  Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
  Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
  Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
  Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
  Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
  Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
  Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
  Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
  Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
  Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
  Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
  Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
  Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
  Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
  Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
  Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
  Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
  Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
  Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
  Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
  Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
  Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
  Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
  Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
  Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
  Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
  
  Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
  #设置marker在热图中的注释
  ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                         NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                         NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                         NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                         NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                         NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                         HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                         YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                         REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                         #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                         CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                         POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                         MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                         
                         INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                         SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                         GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                         ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                         DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                         CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                         CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                         CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                         UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                         CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                         EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                         CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                         SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                         TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                         ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                         CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                         ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                         CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                         EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                         NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                         
                         annotation_height = c(rep(1,35)))
  #对聚类结果文件进行排序
  sorted_consensus<-res@consensus[sorted_group,sorted_group]
  
  consensusMatrix_heatmap<-Heatmap(sorted_consensus,
                                   cluster_rows = F,
                                   cluster_columns = F,
                                   bottom_annotation=ha,
                                   show_column_names=F)#绘制热图
  png.names<-paste("3-k=",ik,"png",sep=".")#设置生成图片名称
  png(filename = png.names,width=1200,height = 1900)#生成图片
  print(consensusMatrix_heatmap)
  dev.off()
}


#并进行一致性聚类
library(ConsensusClusterPlus)
distances_value<-c("pearson", "spearman", "euclidean", "binary", "maximum", "canberra", "minkowski")
clusterAlg_value<-c("hc","pam","km")
George_FPKM_filtered<-as.matrix(George_FPKM_filtered)
for(i in distances_value){
  for(j in clusterAlg_value){
    file_name<-paste("3-George_FPKM_filtered",i,j,sep="_")#文件夹名称的设置
    assign(file_name,ConsensusClusterPlus(George_FPKM_filtered,#生成相关文件夹
                                          maxK=10,#设置最大聚类的类数
                                          reps=20000,#重复次数
                                          distance=i,#距离计算方法
                                          clusterAlg=j,
                                          title=file_name,
                                          plot= 'png',
                                          writeTable=T))
  }
}

#读取文件夹名称
file_names = list.files(pattern = "3-George_FPKM_filtered")   
#遍历文件夹,生成图片
for(i in file_names){#遍历文件夹
  for(j in 2:10){#遍历文件夹下需要的文件
    file_name_pre<-paste(i,".k=",j,sep="")#设置生成图片的前缀
    K_names<-paste("k=",j,sep="")#获得K值
    file_names1<-paste(i,K_names,"consensusClass.csv",sep=".")#设置consensusClass.csv名称
    file_names2<-paste(i,K_names,"consensusMatrix.csv",sep=".")#设置consensusMatrix.csv名称
    file_class<-paste(i,file_names1,sep="/")#设置路径+consensusClass.csv名称
    class<-read.table(file_class,sep = ",")#读取consensusClass.csv文件
    file_consensusMatrix<-paste(i,file_names2,sep="/")#设置路径+consensusMatrix.csv名称
    consensusMatrix<-read.table(file_consensusMatrix,header = T,sep=",")#读取consensusMatrix.csv文件
    consensusMatrix<-consensusMatrix[,-1]
    colnames(consensusMatrix)<-class[,1]
    rownames(consensusMatrix)<-class[,1]
    
    class1<-class[order(class$V2),]#按聚类结果进行排序
    George_FPKM1<-George_FPKM1[,class1[,1]]#表达丰度数据的colnames也按聚类结果进行排序
    
    #设置Markers
    Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
    Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
    Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
    Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
    Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
    Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
    Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
    Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
    Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
    Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
    Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
    Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
    Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
    Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
    Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
    Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
    Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
    Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
    Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
    Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
    Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
    Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
    Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
    Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
    Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
    Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
    Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
    Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
    Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
    Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
    Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
    Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
    Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
    
    Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
    #设置marker在热图中的注释
    ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                           NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                           NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                           NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                           NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                           NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                           HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                           YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                           REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                           #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                           CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                           POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                           MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                           
                           INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                           SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                           GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                           ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                           DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                           CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                           CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                           CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                           UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                           CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                           EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                           CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                           SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                           TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                           ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                           CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                           ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                           CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                           EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                           NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                           
                           annotation_height = c(rep(1,35)))
    
    #对聚类结果文件进行排序
    for(m in rownames(consensusMatrix)){
      consensusMatrix[m,]<-as.numeric(consensusMatrix[m,])
    }
    consensusMatrix<-consensusMatrix[class1$V1,class1$V1]
    
    png.names<-paste(file_name_pre,"png",sep=".")#设置生成图片名称
    D_F<-paste(i,png.names,sep="/")#设置路径+名称
    consensusMatrix_heatmap<-Heatmap(consensusMatrix,cluster_rows = F,cluster_columns = F,bottom_annotation=ha,show_column_names=F)#绘制热图
    png(filename = D_F,width=1200,height = 1900)#生成图片
    print(consensusMatrix_heatmap)
    dev.off()
  }}

4-
library(BimodalIndex)
library(NMF)

library("preprocessCore")
setwd("D:/project/01.SCLC/03.数据分析/00.SCLC_expression_file/01.grouping/2021-Cancer-Cell-Patterns")
#读取数据
George_FPKM<-read.table("D:/project/01.SCLC/03.数据分析/George_2015_sum_FPKM.txt")

George_FPKM1<-George_FPKM
#①计算符合双峰指数≥1.5,平均表达值≥25th,sd value≥50th条件下的基因。
#计算平均值,并获得means≥25th的基因名
George_FPKM<-log2(George_FPKM+1)
George_FPKM_mean<-rowMeans(George_FPKM)
George_FPKM_Means_25th_names<-names(George_FPKM_mean[George_FPKM_mean>=quantile(George_FPKM_mean,0.25)])


#计算标准差,并获得前sd 50th的基因名
George_FPKM_sd<-data.frame()
for(i in rownames(George_FPKM)){
  George_FPKM_sd[i,"sd_value"]<-sd(George_FPKM[i,])
  George_FPKM_sd[i,"Gene_names"]<-i
}
George_FPKM_sd_50th_names<-rownames(George_FPKM_sd[George_FPKM_sd$sd_value>=quantile(George_FPKM_sd$sd_value,0.5),])

#获得前sd 25th的基因名和means前50th的基因名的交集
intersect_means_sd_names<-intersect(George_FPKM_sd_50th_names,George_FPKM_Means_25th_names)
#计算交集基因的双峰指数,并获得双峰指数≥1.5的基因
George_FPKM_bi <- bimodalIndex(George_FPKM[intersect_means_sd_names,], verbose=FALSE)
dim(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
George_FPKM_bi_1.5<-rownames(George_FPKM_bi[George_FPKM_bi$BI>=1.5,])
#获得符合条件的基因矩阵
George_FPKM_filtered<-George_FPKM[George_FPKM_bi_1.5,]
#查看基因数量
dim(George_FPKM_filtered)

#使用preprocessCore进行分位数标准化
George_FPKM_filtered<-as.matrix(George_FPKM_filtered)
George_FPKM_filtered<-normalize.quantiles(George_FPKM_filtered,keep.names=T)

estim.r <- nmf(George_FPKM_filtered, 2:7, nrun=1000, seed=123456)
png("4-estim.r.plot.png",width=500,height = 500)
plot(estim.r)
dev.off()


#
for(ik in c(2:7)){
  use.this.k <- ik
  res <- nmf(George_FPKM_filtered, use.this.k, nrun=1000 ,.options='vt')
  consensusmap_name<-paste("4-k=",ik," consensusmap.png",sep="")
  png(consensusmap_name,width=1000,height = 1000)
  consensusmap(res)
  dev.off()
  #获得分组信息
  group<-predict(res)
  sorted_group<-names(sort(group))
  George_FPKM1<-George_FPKM1[,sorted_group]#表达丰度数据的colnames也按聚类结果进行排序
  #设置Markers
  Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
  Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
  Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
  Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
  Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
  Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
  Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
  Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
  Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
  Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
  Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
  Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
  Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
  Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
  Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
  Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
  Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
  Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
  Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
  Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
  Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
  Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
  Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
  Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
  Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
  Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
  Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
  Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
  Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
  Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
  Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
  Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
  Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
  Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
  Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
  
  Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
  #设置marker在热图中的注释
  ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                         NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                         NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                         NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                         NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                         NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                         HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                         YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                         REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                         #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                         CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                         POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                         MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                         
                         INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                         SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                         GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                         ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                         DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                         CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                         CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                         CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                         UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                         CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                         EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                         CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                         SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                         TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                         ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                         NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                         CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                         CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                         ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                         CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                         EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                         NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                         
                         annotation_height = c(rep(1,35)))
  #对聚类结果文件进行排序
  sorted_consensus<-res@consensus[sorted_group,sorted_group]
  
  consensusMatrix_heatmap<-Heatmap(sorted_consensus,
                                   cluster_rows = F,
                                   cluster_columns = F,
                                   bottom_annotation=ha,
                                   show_column_names=F)#绘制热图
  png.names<-paste("4-k=",ik,"png",sep=".")#设置生成图片名称
  png(filename = png.names,width=1200,height = 1900)#生成图片
  print(consensusMatrix_heatmap)
  dev.off()
}


#并进行一致性聚类
library(ConsensusClusterPlus)
distances_value<-c("pearson", "spearman", "euclidean", "binary", "maximum", "canberra", "minkowski")
clusterAlg_value<-c("hc","pam","km")
George_FPKM_filtered<-as.matrix(George_FPKM_filtered)
for(i in distances_value){
  for(j in clusterAlg_value){
    file_name<-paste("4-George_FPKM_filtered",i,j,sep="_")#文件夹名称的设置
    assign(file_name,ConsensusClusterPlus(George_FPKM_filtered,#生成相关文件夹
                                          maxK=10,#设置最大聚类的类数
                                          reps=20000,#重复次数
                                          distance=i,#距离计算方法
                                          clusterAlg=j,
                                          title=file_name,
                                          plot= 'png',
                                          writeTable=T))
  }
}

#读取文件夹名称
file_names = list.files(pattern = "3-George_FPKM_filtered")   
#遍历文件夹,生成图片
for(i in file_names){#遍历文件夹
  for(j in 2:10){#遍历文件夹下需要的文件
    file_name_pre<-paste(i,".k=",j,sep="")#设置生成图片的前缀
    K_names<-paste("k=",j,sep="")#获得K值
    file_names1<-paste(i,K_names,"consensusClass.csv",sep=".")#设置consensusClass.csv名称
    file_names2<-paste(i,K_names,"consensusMatrix.csv",sep=".")#设置consensusMatrix.csv名称
    file_class<-paste(i,file_names1,sep="/")#设置路径+consensusClass.csv名称
    class<-read.table(file_class,sep = ",")#读取consensusClass.csv文件
    file_consensusMatrix<-paste(i,file_names2,sep="/")#设置路径+consensusMatrix.csv名称
    consensusMatrix<-read.table(file_consensusMatrix,header = T,sep=",")#读取consensusMatrix.csv文件
    consensusMatrix<-consensusMatrix[,-1]
    colnames(consensusMatrix)<-class[,1]
    rownames(consensusMatrix)<-class[,1]
    
    class1<-class[order(class$V2),]#按聚类结果进行排序
    George_FPKM1<-George_FPKM1[,class1[,1]]#表达丰度数据的colnames也按聚类结果进行排序
    
    #设置Markers
    Two_annotation_genes_FPKM_NEUROD1<-as.vector(as.matrix(George_FPKM1["NEUROD1",]))
    Two_annotation_genes_FPKM_NEUROD2<-as.vector(as.matrix(George_FPKM1["NEUROD2",]))
    Two_annotation_genes_FPKM_NEUROD4<-as.vector(as.matrix(George_FPKM1["NEUROD4",]))
    Two_annotation_genes_FPKM_NOTCH1<-as.vector(as.matrix(George_FPKM1["NOTCH1",]))
    Two_annotation_genes_FPKM_NOTCH2<-as.vector(as.matrix(George_FPKM1["NOTCH2",]))
    Two_annotation_genes_FPKM_NOTCH3<-as.vector(as.matrix(George_FPKM1["NOTCH3",]))
    Two_annotation_genes_FPKM_NOTCH4<-as.vector(as.matrix(George_FPKM1["NOTCH4",]))
    Two_annotation_genes_FPKM_POU2F3<-as.vector(as.matrix(George_FPKM1["POU2F3",]))
    Two_annotation_genes_FPKM_ASCL1<-as.vector(as.matrix(George_FPKM1["ASCL1",]))
    Two_annotation_genes_FPKM_YAP1<-as.vector(as.matrix(George_FPKM1["YAP1",]))
    Two_annotation_genes_FPKM_MYC<-as.vector(as.matrix(George_FPKM1["MYC",]))
    Two_annotation_genes_FPKM_CALCA<-as.vector(as.matrix(George_FPKM1["CALCA",]))
    Two_annotation_genes_FPKM_UCHL1<-as.vector(as.matrix(George_FPKM1["UCHL1",]))
    Two_annotation_genes_FPKM_INSM1<-as.vector(as.matrix(George_FPKM1["INSM1",]))
    Two_annotation_genes_FPKM_SCG2<-as.vector(as.matrix(George_FPKM1["SCG2",]))
    Two_annotation_genes_FPKM_REST<-as.vector(as.matrix(George_FPKM1["REST",]))
    Two_annotation_genes_FPKM_CDH5<-as.vector(as.matrix(George_FPKM1["CDH5",]))
    Two_annotation_genes_FPKM_EZH2<-as.vector(as.matrix(George_FPKM1["EZH2",]))
    Two_annotation_genes_FPKM_CD44<-as.vector(as.matrix(George_FPKM1["CD44",]))
    Two_annotation_genes_FPKM_EPCAM<-as.vector(as.matrix(George_FPKM1["EPCAM",]))
    Two_annotation_genes_FPKM_HES1<-as.vector(as.matrix(George_FPKM1["HES1",]))
    Two_annotation_genes_FPKM_DDC<-as.vector(as.matrix(George_FPKM1["DDC",]))
    Two_annotation_genes_FPKM_CLDN4<-as.vector(as.matrix(George_FPKM1["CLDN4",]))
    Two_annotation_genes_FPKM_GRP<-as.vector(as.matrix(George_FPKM1["GRP",]))
    Two_annotation_genes_FPKM_CHGA<-as.vector(as.matrix(George_FPKM1["CHGA",]))
    Two_annotation_genes_FPKM_CALCB<-as.vector(as.matrix(George_FPKM1["CALCB",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CHGB<-as.vector(as.matrix(George_FPKM1["CHGB",]))
    Two_annotation_genes_FPKM_SYP<-as.vector(as.matrix(George_FPKM1["SYP",]))
    Two_annotation_genes_FPKM_TTF1<-as.vector(as.matrix(George_FPKM1["TTF1",]))
    Two_annotation_genes_FPKM_ATOH1<-as.vector(as.matrix(George_FPKM1["ATOH1",]))
    Two_annotation_genes_FPKM_NCAM1<-as.vector(as.matrix(George_FPKM1["NCAM1",]))
    Two_annotation_genes_FPKM_CD24<-as.vector(as.matrix(George_FPKM1["CD24",]))
    Two_annotation_genes_FPKM_CADM1<-as.vector(as.matrix(George_FPKM1["CADM1",]))
    Two_annotation_genes_FPKM_ALCAM<-as.vector(as.matrix(George_FPKM1["ALCAM",]))
    Two_annotation_genes_FPKM_CD151<-as.vector(as.matrix(George_FPKM1["CD151",]))
    Two_annotation_genes_FPKM_EPHA2<-as.vector(as.matrix(George_FPKM1["EPHA2",]))
    
    Two_annotation_genes_FPKM_NIPAL4<-as.vector(as.matrix(George_FPKM1["NIPAL4",]))
    #设置marker在热图中的注释
    ha = HeatmapAnnotation(NEUROD1 = anno_barplot(Two_annotation_genes_FPKM_NEUROD1),
                           NEUROD2 = anno_barplot(Two_annotation_genes_FPKM_NEUROD2),
                           NEUROD4 = anno_barplot(Two_annotation_genes_FPKM_NEUROD4),
                           NOTCH1 = anno_barplot(Two_annotation_genes_FPKM_NOTCH1),
                           NOTCH2 = anno_barplot(Two_annotation_genes_FPKM_NOTCH2),
                           NOTCH3 = anno_barplot(Two_annotation_genes_FPKM_NOTCH3),
                           HES1= anno_barplot(Two_annotation_genes_FPKM_HES1),
                           YAP1= anno_barplot(Two_annotation_genes_FPKM_YAP1),
                           REST= anno_barplot(Two_annotation_genes_FPKM_REST),
                           #NOTCH4 = anno_barplot(Two_annotation_genes_FPKM_NOTCH4),
                           CD44= anno_barplot(Two_annotation_genes_FPKM_CD44),
                           POU2F3 = anno_barplot(Two_annotation_genes_FPKM_POU2F3),
                           MYC= anno_barplot(Two_annotation_genes_FPKM_MYC),
                           
                           INSM1= anno_barplot(Two_annotation_genes_FPKM_INSM1),
                           SCG2= anno_barplot(Two_annotation_genes_FPKM_SCG2),
                           GRP= anno_barplot(Two_annotation_genes_FPKM_GRP),
                           ASCL1= anno_barplot(Two_annotation_genes_FPKM_ASCL1),
                           DDC= anno_barplot(Two_annotation_genes_FPKM_DDC),
                           CALCA= anno_barplot(Two_annotation_genes_FPKM_CALCA),
                           CALCB= anno_barplot(Two_annotation_genes_FPKM_CALCB),
                           CHGA= anno_barplot(Two_annotation_genes_FPKM_CHGA),
                           UCHL1= anno_barplot(Two_annotation_genes_FPKM_UCHL1),
                           CLDN4= anno_barplot(Two_annotation_genes_FPKM_CLDN4),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           EZH2= anno_barplot(Two_annotation_genes_FPKM_EZH2),
                           EPCAM= anno_barplot(Two_annotation_genes_FPKM_EPCAM),
                           CHGB= anno_barplot(Two_annotation_genes_FPKM_CHGB),
                           SYP= anno_barplot(Two_annotation_genes_FPKM_SYP),
                           TTF1= anno_barplot(Two_annotation_genes_FPKM_TTF1),
                           ATOH1= anno_barplot(Two_annotation_genes_FPKM_ATOH1),
                           NCAM1= anno_barplot(Two_annotation_genes_FPKM_NCAM1),
                           CD24= anno_barplot(Two_annotation_genes_FPKM_CD24),
                           CADM1= anno_barplot(Two_annotation_genes_FPKM_CADM1),
                           ALCAM= anno_barplot(Two_annotation_genes_FPKM_ALCAM),
                           CD151= anno_barplot(Two_annotation_genes_FPKM_CD151),
                           EPHA2= anno_barplot(Two_annotation_genes_FPKM_EPHA2),
                           NIPAL4= anno_barplot(Two_annotation_genes_FPKM_NIPAL4),
                           
                           annotation_height = c(rep(1,35)))
    
    #对聚类结果文件进行排序
    for(m in rownames(consensusMatrix)){
      consensusMatrix[m,]<-as.numeric(consensusMatrix[m,])
    }
    consensusMatrix<-consensusMatrix[class1$V1,class1$V1]
    
    png.names<-paste(file_name_pre,"png",sep=".")#设置生成图片名称
    D_F<-paste(i,png.names,sep="/")#设置路径+名称
    consensusMatrix_heatmap<-Heatmap(consensusMatrix,cluster_rows = F,cluster_columns = F,bottom_annotation=ha,show_column_names=F)#绘制热图
    png(filename = D_F,width=1200,height = 1900)#生成图片
    print(consensusMatrix_heatmap)
    dev.off()
  }}
![image.png](https://upload-images.jianshu.io/upload_images/11268306-1bbc81714d773b8b.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 197,000评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,825评论 2 374
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,055评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,766评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,639评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,453评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,860评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,492评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,783评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,817评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,624评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,439评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,872评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,075评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,372评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,868评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,075评论 2 338

推荐阅读更多精彩内容