Notes of Advice for applying machine learning

Evaluating a hypothesis


Data sets are seperated to 3 parts:

1.training sets (60%)

2.validation sets (20%)

3.test sets (20%)

So there are 3 kinds of errors:

1.Training error -> train model

2.Cross Validation error -> select model

3.Test error -> estimate generalization error

Diagnosing bias vs. variance


-By the relationship between degree of polynomial and error



-By the relationship between regularization parameter lambda and error


-By learning curves


What to try next? 


1.Get more training example -> fix high variance (overfit)

2.Try smaller sets of features -> fix high variance (overfit)

3.Try get additional features -> fix high bias (underfit)

4.Try adding polynomial features -> fix high bias (underfit)

5.Try descreasing lambda -> fix high bias (underfit)

6.Try increasing lambda -> fix high variance (overfit)

7.Try larger neural network -> fix high bias (underfit)

8.Try smaller neural network -> fix high variance  (overfit)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 【林小琬~打卡学习】2017年2月2日 第12期+听完视频+完成作业+个人感悟 普通好人vs有智慧的好人 学习金刚...
    林小琬阅读 182评论 0 0
  • 连日里高度紧张压抑的陈默终于“爆发”,开启了吐槽抱怨的模式。身边的朋友是第一批遭殃对象。终于小柔由最初的安慰变成直...
    影2016阅读 428评论 0 0