hackthon代码

from zhihu_oauth import ZhihuClient

client = ZhihuClient()
client.load_token('token.pkl')
# replace it  as user input

# topic
internet = client.from_url('https://www.zhihu.com/topic/19550517')
political = client.from_url('https://www.zhihu.com/topic/19551424')
computer = client.from_url('https://www.zhihu.com/topic/19555547')
occupation = client.from_url('https://www.zhihu.com/topic/19552488')
fishing = client.from_url('https://www.zhihu.com/topic/20022251')
society = client.from_url('https://www.zhihu.com/topic/19566933')

# internet
print(internet.best_answer_count)
print(internet.best_answers_count)
#我也不知道这是啥
for answer in internet.best_answers:

    print('internet')
    print(answer.question.title)
    print(answer.author.name)
    print(answer.content)

    for comments in answer.comments:
        print(comments.content)
        print(comments.vote_count)

# political
for answer in political.best_answers:

    print('political')
    print(answer.question.title)
    print(answer.author.name)
    print(answer.content)

    for comments in answer.comments:
        print(comments.content)
        print(comments.vote_count)

# computer
for answer in computer.best_answers:
    print('computer')
    print(answer.question.title)
    print(answer.author.name)
    print(answer.content)

    for comments in answer.comments:
        print(comments.content)
        print(comments.vote_count)

# occupation
for answer in occupation.best_answers:
    print('occupation')
    print(answer.question.title)
    print(answer.author.name)
    print(answer.content)

    for comments in answer.comments:
        print(comments.content)
        print(comments.vote_count)

# fishing
for answer in fishing.best_answers:
    print('fishing')
    print(answer.question.title)
    print(answer.author.name)
    print(answer.content)

    for comments in answer.comments:
        print(comments.content)
        print(comments.vote_count)

# society
for answer in society.best_answers:
    print('society')
    print(answer.question.title)
    print(answer.author.name)
    print(answer.content)

    for comments in answer.comments:
        print(comments.content)
        print(comments.vote_count)



##the pic data of radar
# internet
print(internet.id)
print(internet.best_answer_count)
print(internet.best_answers_count)
print(internet.follower_count)
print(internet.followers_count)
print(internet.question_count)
print(internet.questions_count)
print(internet.unanswered_count)

# political
print(political.id)
print(political.best_answer_count)
print(political.best_answers_count)
print(political.follower_count)
print(political.followers_count)
print(political.question_count)
print(political.questions_count)
print(political.unanswered_count)

# computer
print(computer.id)
print(computer.best_answer_count)
print(computer.best_answers_count)
print(computer.follower_count)
print(computer.followers_count)
print(computer.question_count)
print(computer.questions_count)
print(computer.unanswered_count)
# occupation
print(occupation.id)
print(occupation.best_answer_count)
print(occupation.best_answers_count)
print(occupation.follower_count)
print(occupation.followers_count)
print(occupation.question_count)
print(occupation.questions_count)
print(occupation.unanswered_count)
# fishing
print(fishing.id)
print(fishing.best_answer_count)
print(fishing.best_answers_count)
print(fishing.follower_count)
print(fishing.followers_count)
print(fishing.question_count)
print(fishing.questions_count)
print(fishing.unanswered_count)
# society
print(society.id)
print(society.best_answer_count)
print(society.best_answers_count)
print(society.follower_count)
print(society.followers_count)
print(society.question_count)
print(society.questions_count)
print(society.unanswered_count)



##the pic data of map

people = client.from_url('https://www.zhihu.com/people/mrfoxlr')

for location in people.locations:

   print(location.'name')
dfs()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容