用esm模型do蛋白 embedding

Github官方文档包含了整个包的所有代码及使用方法:
Github官方文档:https://github.com/facebookresearch/esm

一、python代码实现esm模型蛋白embedding

示例代码见:E:\cgx硬盘\★Python and AI\(cgx★★)生物\esm (Facebook)\esm_protein_embedding\facebook_ems_model_protein_embedding.ipynb

二、整个FASTA文件内蛋白embedding(采用命令行脚本)

1.按官网步骤pip安装esm包;

2.官网下载原文件并解压得到:

image.png

3.进入该文件一级目录,在该目录下打开终端并进入安装有esm包的环境,然后运行以下代码(来源于Github官网):

python scripts/extract.py esm2_t33_650M_UR50D examples/data/some_proteins.fasta examples/data/some_proteins_emb_esm2 --repr_layers 0 32 33 --include mean per_tok

说明:
scripts/extract.py:原代码
esm2_t33_650M_UR50D:用到的预训练模型(其他模型可以在官网找)
examples/data/some_proteins.fasta:待embedding的蛋白质fasta文件
examples/data/some_proteins_emb_esm2:存储fasta文件中每个蛋白的embedding结果文件(一个蛋白一个文件),其中some_proteins_emb_esm2是文件夹(目录)名称,如有该目录已经存在则直接用,不存在则自动生成。
--rep -layers: (默认值:final only)选择要包含嵌入的层。
--include: 指定要保存的嵌入。您可以使用以下方法:

  • per_tok 完整的序列嵌入(seq_len x hidden_dim),即每个氨基酸都有一个hidden_dim长度的嵌入。
  • mean 完整的序列嵌入上的平均值(1 x hidden_dim),即在(seq_len x hidden_dim)的基础上对seq_len方向求平均,结果是所有蛋白质都被表征成了hidden_dim长度的向量。
  • bos 包括序列开始标记的嵌入。(注意:不要与预训练模型一起使用-我们在没有boss令牌监督的情况下进行了训练)
    下图是我的实操:
    1.png

    从上图可以看出,代码首先自动下载了模型,然后自动处理:
    预训练模型存储路径.png

    代码运行结束后,已经在对应目录下生成了每个蛋白的embedding文件了(以.pt结尾):
    自动生成目标文件.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,247评论 6 543
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,520评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,362评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,805评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,541评论 6 412
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,896评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,887评论 3 447
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,062评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,608评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,356评论 3 358
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,555评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,077评论 5 364
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,769评论 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,175评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,489评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,289评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,516评论 2 379

推荐阅读更多精彩内容