【植物学笔记】植物细胞(一)

博物学的内容纷繁复杂,特别是在界门纲目科属种的分类生物学领域更是让人摸不着头脑,所以,我在学习植物学的时候都绕不开一些基础的概念例如细胞、组织、器官、生理功能,才能为之后分析植物的亲缘关系、形态结构、生理功能奠定好基础。首先我们就来先研究一下植物细胞。

图片发自简书App


我们从植物组成细胞的结构开始讲起,首先在原生质体生命活动过程中向外分泌的多种复合物质形成的支撑和保护植物细胞的结构就是细胞壁,与维持原生质体的膨压和植物组织的吸收、蒸腾、运输和分泌方面的生理活动有很大的关系。

植物细胞壁(cell wall)可以分为中间层(Middle lamella)(与子细胞同时形成,主要成分是果胶,可以将相邻的细胞黏在一起,在酶的作用下会被分解,果肉细胞就是这样分离的;同时其可塑性也不会阻碍细胞生长和长大),初生壁(Primary cell wall)(细胞生长、体积增大时形成,主要由纤维素、半纤维素和果胶构成,提供了细胞生长所需的强度和灵活性),次生壁(Secondary cell wall)(分化成熟体积、停止增大、原生质体走向消亡时出现,位于初生壁内侧,比初生壁厚,主要由纤维素构成以及角质素、木质素和矿质等,根据次生壁中微纤丝的排列方向也可以分为内、中、外三层,不同的取向规则使得细胞壁厚度增加、刚性增强、延展性缺乏)

根据细胞壁的“经纬”模型,初生壁由伸展蛋白网络和纤维素微纤丝网络相互交织而成,悬浮在亲水的果胶—半纤维素(其中的木葡聚糖起到限制微纤丝运动的作用)胶体之中。细胞的生长受到交联网络的控制,即“酸性成长假说”,膨胀素打开木葡聚糖与纤维素之间的氢键,然而利用酶将β-(1,4)糖苷键水解,使得细胞松弛,膨压下降从而吸水生长。在这个过程中初生壁的微纤丝由少到多、由稀疏到致密、横向排列于细胞长轴转变为纵向排列。细胞壁的生长包括初生壁的面积增大和次生壁的厚度增加。次生壁还会发生木质化、栓质化、角质化、矿质化。

下图就是植物细胞壁的主要结构:

图片发自简书App


细胞壁经常会有凹陷区域容许胞间连丝通过,这个区域通常被称为初生纹孔场(primary pit field),次生壁形成时有的初生纹孔场不形成次生壁,这个只有中间层和初生壁的较薄部分称之为纹孔,相邻两细胞的纹孔通常成对存在,合成纹孔对(pit pair)。纹孔对中的中间层和两边的次生壁称之为纹孔膜(pit membrane)。纹孔的腔成为纹孔腔(pit cavity)。如图所示:

图片发自简书App

按结构特征还可以分为单纹孔(simply pit)与具缘纹孔(bordered pit)两种类型。下图的(a)、(b),松科植物的具缘纹孔甚至中央加厚成纹孔塞(torus),周围未增厚部分受压可伸张暂时堵塞纹孔口即塞周缘(margo),压力消失后恢复原状。


图片发自简书App

除纹孔外,连接两植物细胞之间还存在胞间连丝(plasmodesma),是细胞间物质、信息、能量的直接通道。胞间连丝是贯穿细胞壁的管状结构,周围衬有质膜,与两侧细胞的质膜,与两侧细胞的质膜相连。中央有压缩内质网(appressed ER,也称连丝微管 desmotubule),压缩内质网中间颜色深,成为中心柱。压缩内质网与质膜之间为细胞质通道(cytoplasmic sleeve),通过胞间连丝结合在一起的结构称之为共质体,共质体以外的部分就称为质外体。


细胞壁在植物中有着机械支持(初生壁中微纤丝的骨架作用、半纤维素的支撑作用、结构蛋白的网络作用、果胶的粘性作用以及各组分的相互交联,次生壁中微纤丝的排列方式不同可以使得收到各个方向压力。木质化次生壁的机械强度更大。)、细胞生长的调控、物质运输(包括质外体运输(apoplastic transport)与共质体运输(symplastic transport),质外体在细胞壁内运动,进入胞间隙或跨膜进入另一个细胞)、细胞识别(如宿主细胞的凝集素与细菌表面多糖的识别)、植物防御(如木质化、胼胝质积累、伸展蛋白合成增加、β-(1,3)-葡聚糖酶与几丁质酶活性增加)

细胞壁的主要成分是纤维素,是植物体中含量最多的成分。应用于造纸、人造纤维、火药、胶片、绝缘材料和食品工业。木质素是植物体中数量仅次于纤维素的第二种有机物,在石油、塑料、燃料和制革有着广泛用途。

参考:

https://www.ncbi.nlm.nih.gov/pubmed/16261190

http://www.sogou.com/link?url=hedJjaC291P8Yl3GwImTpfrZ3-yWJCqUaxNSZb82BkdHSCX-SBaG0EOPGXQX-iw6&query=cell+wall

https://en.wikipedia.org/wiki/Cell_wall

https://en.wikipedia.org/wiki/Plasmodesma

https://en.wikipedia.org/wiki/Pit_(botany)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容