一、接口
TypeScript的核心原则之一是对值所具有的结构进行类型检查。 它有时被称做“鸭式辨型法”或“结构性子类型化”。 在TypeScript里,接口的作用
就是为这些类型命名和为你的代码或第三方代码定义契约
。
下面通过一个简单示例来观察接口是如何工作的:
function printLabel(labelledObj: { label: string }) {
console.log(labelledObj.label);
}
let myObj = { size: 10, label: "Size 10 Object" };
printLabel(myObj);
定义了一个printLabel函数,有个参数label,并要求这个对象参数类型为string的属性。需要注意的是,我们传入的对象参数实际上会包含很多属性,但是编译器只会检查那些必需的属性是否存在,并且其类型是否匹配。 然而,有些时候TypeScript却并不会这么宽松,我们下面会稍做讲解。
下面我们重写上面的例子,这次使用接口来描述:必须包含一个label
属性且类型为string
:
interface LabelledValue {
label: string;
}
function printLabel(labelledObj: LabelledValue) {
console.log(labelledObj.label);
}
let myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);
LabelledValue接口就好比一个名字,用来描述上面例子里的要求。 它代表了有一个 label属性且类型为string的对象。 需要注意的是,我们在这里并不能像在其它语言里一样,说传给 printLabel的对象实现了这个接口。我们只会去关注值的外形。 只要传入的对象满足上面提到的必要条件,那么它就是被允许的。
还有一点值得提的是,类型检查器不会
去检查属性的顺序
,只要相应的属性存在
并且类型
也是对的就可以。
可选属性
接口里的属性不全都是必需,带有可选属性的接口与普通的接口定义差不多,只是在可选属性名字定义的后面加一个?符号。
interface SquareConfig {
color?: string;
width?: number;
}
function createSquare(config: SquareConfig): {color: string; area: number} {
let newSquare = {color: "white", area: 100};
if (config.color) {
newSquare.color = config.color;
}
if (config.width) {
newSquare.area = config.width * config.width;
}
return newSquare;
}
let mySquare = createSquare({color: "black"});
console.log(mySquare)//输出`{color: 'black', area: 100}`
可选属性的好处之一是可以对可能存在的属性进行预定义
,好处之二是可以捕获
引用了不存在的属性时的错误
。
只读属性
一些对象属性只能在对象刚刚创建的时候修改其值。 你可以在属性名前用 readonly
来指定只读属性:
interface Point {
readonly x: number;
readonly y: number;
}
let p1: Point = { x: 10, y: 20 };
p1.x = 5; // error! 不能修改x值,只读属性
TypeScript具有ReadonlyArray<T>类型,它与Array<T>相似,只是把所有可变方法去掉了,因此可以确保数组创建后再也不能被修改:
let a: number[] = [1, 2, 3, 4];
let ro: ReadonlyArray<number> = a;
ro[0] = 12; // error!
ro.push(5); // error!
ro.length = 100; // error!
a = ro; // error! a = ro as number[];
二、类
从ECMAScript 2015,也就是ECMAScript 6开始,JavaScript程序员将能够使用基于类的面向对象的方式。 使用TypeScript,我们允许开发者现在就使用这些特性,并且编译后的JavaScript可以在所有主流浏览器和平台上运行,而不需要等到下个JavaScript版本。
下面简单看下使用类的例子:
class Greeter {
//定义属性
greeting: string;
//构造方法
constructor(message: string) {
this.greeting = message;
}
greet() {
return "Hello, " + this.greeting;
}
}
let greeter = new Greeter("world");//实例化Greeter类
继承
在TypeScript里,我们可以使用常用的面向对象模式。 基于类的程序设计中一种最基本的模式是允许使用继承来扩展现有的类。通过 extends
关键字实现类的继承。
//父类Animal
class Animal {
move(distanceInMeters: number = 0) {
console.log(`Animal moved ${distanceInMeters}m.`);
}
}
//子类Dog 继承Animal
class Dog extends Animal {
bark() {
console.log('Woof! Woof!');
}
}
const dog = new Dog();
dog.bark();
dog.move(10);
dog.bark();
在这个例子,Dog是一个派生类
,它派生自 Animal 基类
,通过 extends关键字。 派生类通常被称作子类
,基类通常被称作超类
。
公共(public),私有(private)与受保护(protected)的修饰符
1、public
在TypeScript里,成员都默认
为 public
。
class Animal {
public name: string;
public constructor(theName: string) { this.name = theName; }
public move(distanceInMeters: number) {
console.log(`${this.name} moved ${distanceInMeters}m.`);
}
}
2、private
成员被标记成 private时,它就不能在声明它的类在外部访问。
class Animal {
private name: string;
constructor(theName: string) {
this.name = theName;
}
}
new Animal("Cat").name; // 错误: 'name' 是私有的.
3、protected
protected
修饰符与 private
修饰符的行为很相似,但有一点不同, protected
成员在派生类中仍然可以访问。例如:
class Person {
protected name: string;
constructor(name: string) { this.name = name; }
}
class Employee extends Person {
private department: string;
constructor(name: string, department: string) {
super(name)
this.department = department;
}
public getElevatorPitch() {
return `Hello, my name is ${this.name} and I work in ${this.department}.`;
}
}
let howard = new Employee("Howard", "Sales");
console.log(howard.getElevatorPitch());
console.log(howard.name); // 错误
readonly修饰符
readonly关键字将属性设置为只读的。 只读属性必须在声明时或构造函数里被初始化
class Octopus {
readonly name: string;
readonly numberOfLegs: number = 8;
constructor (theName: string) {
this.name = theName;
}
}
let dad = new Octopus("Man with the 8 strong legs");
dad.name = "Man with the 3-piece suit"; // 错误! name 是只读的.
存取器
TypeScript支持通过getters/setters来截取对对象成员的访问。 它能帮助你有效的控制对对象成员的访问。
let passcode = "secret passcode";
class Employee {
private _fullName: string;
get fullName(): string {
return this._fullName;
}
set fullName(newName: string) {
if (passcode && passcode == "secret passcode") {
this._fullName = newName;
}
else {
console.log("Error: Unauthorized update of employee!");
}
}
}
let employee = new Employee();
employee.fullName = "Bob Smith";
if (employee.fullName) {
alert(employee.fullName);
}
静态属性
到目前为止,我们只讨论了类的实例成员,那些仅当类被实例化的时候才会被初始化的属性。 我们也可以创建类的静态成员,这些属性存在于类本身上面而不是类的实例上。
在这个例子里,我们可以使用 static
定义 origin
。 每个实例想要访问这个属性的时候,都要在 origin
前面加上类名。 如同在实例属性上使用 this.
前缀来访问属性一样,这里我们使用 Grid.
来访问静态属性。
class Grid {
static origin = {x: 0, y: 0};
calculateDistanceFromOrigin(point: {x: number; y: number;}) {
let xDist = (point.x - Grid.origin.x);
let yDist = (point.y - Grid.origin.y);
return Math.sqrt(xDist * xDist + yDist * yDist) / this.scale;
}
//构造函数是不能够通过static
constructor (public scale: number) { }
}
let grid1 = new Grid(1.0); // 1x scale
let grid2 = new Grid(5.0); // 5x scale
console.log(grid1.calculateDistanceFromOrigin({x: 10, y: 10}));
console.log(grid2.calculateDistanceFromOrigin({x: 10, y: 10}));
抽象类
抽象类做为其它派生类的基类使用。 它们一般不会直接被实例化。 不同于接口,抽象类可以包含成员的实现细节。 abstract
关键字是用于定义抽象类和在抽象类内部定义抽象方法(可以包含实例方法,抽象类
是不能被实例化
,为了让子类
进行实例化
及实现内部
的方法)。
//定义一个抽象类
abstract class Animal{
abstract name:string='大黄狗'
//抽象方法
abstract cry()
//实例方法
run(){
console.log('run')
}
}
//定义一个子类(派生类)Dog
class Dog extends Animal{
name:string='大黑狗'
//重新的实现抽象类的中的方法,此时这个方法就是当前Dog的类的实例方法
cry() {
console.log('dog cry');
}
}
const dog=new Dog()
dog.cry()
dog.run()