Dl4j - CSV数据转换

准备数据

0,0,24,9.833333333333334,10,9.7,454,0
0,1,4,17.0,1,17.0,432,0
1,0,2,20.0,1,20.0,0,0
1,1,24,10.375,13,9.615384615384615,455,0
1,1,4,10.75,3,11.0,0,0
0,1,3,16.0,2,16.0,246,0
0,1,6,13.0,4,13.0,4767,0

转换

val sparkConf = new SparkConf()
    .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    .set("spark.kryo.registrator", "org.nd4j.Nd4jRegistrator")
    .setMaster("local[*]")
    .setAppName("Dl4jTransform")

  val useSparkLocal = true

  val spark = SparkSession
    .builder
    .config(sparkConf)
    .getOrCreate()

  def main(args: Array[String]): Unit = {
    val sc = spark.sparkContext
    sc.setLogLevel("ERROR")

    val inputDataSchema = new Schema.Builder()
      .addColumnInteger("geneSid")
      .addColumnInteger("platform")
      .addColumnInteger("loginCount")
      .addColumnDouble("loginHour")
      .addColumnInteger("shareCount")
      .addColumnDouble("shareHour")
      .addColumnDouble("regHours")
      .addColumnCategorical("shareIn", "YES", "NO")
      .build()

    val tp = new TransformProcess.Builder(inputDataSchema)
      .removeColumns("shareHour", "loginHour")
      .convertToInteger("regHours") //转成整数
//      .transform(new BaseDoubleTransform("regHours") { //自定义转换
//        override def map(writable: Writable): Writable = {
//          new IntWritable(writable.toInt)
//        }
//
//        override def map(o: Any): AnyRef = {
//          val d = o.asInstanceOf[Double]
//          new IntWritable(d.toInt)
//        }
//      })
      .categoricalToInteger("shareIn") // 转成数字 YES:0  NO:1
      .build()

    val lines = spark.sparkContext.textFile("hello.csv")
    val readWritables = lines.map(new StringToWritablesFunction(new CSVRecordReader()).call(_))
    val processed = SparkTransformExecutor.execute(readWritables, tp)
    val toSave = processed.map(new WritablesToStringFunction("\t"))

    import spark.implicits._
    toSave.rdd.toDS().show(false)
  }

输出结果

+------------------------+
|value                   |
+------------------------+
|0  0   24  10  454   0  |
|0  1   4   1   432   0  |
|1  0   2   1   0     0  |
|1  1   24  13  455   1  |
|1  1   4   3   0     0  |
|0  1   3   2   246   0  |
|0  1   6   4   4767  0  |
+------------------------+

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容