10X scRNA免疫治疗学习笔记-3-走Seurat标准流程

刘小泽写于19.10.15
笔记目的:根据生信技能树的单细胞转录组课程探索10X Genomics技术相关的分析
课程链接在:http://jm.grazy.cn/index/mulitcourse/detail.html?cid=55
第二单元第7讲:走Seurat标准流程【文章结构总-分-总,结尾有完整的代码,熟悉者前面可以跳过,去看后面8min完成的代码】

前言

前面介绍了自己利用cellranger count的结果进行seurat分析,但是整合数据方面做得还是不如原作者优秀,虽然我们不知道他们是如何处理的,但还是可以继续向下进行,而且这一次将会使用他们合并好的数据

从下载GEO开始

https://www.ncbi.nlm.nih.gov//geo/query/acc.cgi?acc=GSE117988

下载:GSE117988_raw.expMatrix_PBMC.csv.gz

rm(list = ls()) 
options(warn=-1) 
suppressMessages(library(Seurat))

# 读取表达矩阵
start_time <- Sys.time()
raw_dataPBMC <- read.csv('./GSE117988_raw.expMatrix_PBMC.csv.gz', header = TRUE, row.names = 1)
end_time <- Sys.time()
end_time - start_time
#Time difference of 1.486653 mins

> dim(raw_dataPBMC) 
[1] 17712 12874
# 得到17712基因,12874细胞

复现作者的分群结果

下载后怎么进行归一化、时间点划分、创建对象、分群其实作者也已经给了答案:https://www.researchgate.net/publication/328016998_Supplementary_Material_6/data/5bb2eac9299bf13e605a0a74/41467-2018-6300-MOESM6-ESM.txt

首先对文库大小进行一个归一化
dataPBMC <- log2(1 + sweep(raw_dataPBMC, 2,            median(colSums(raw_dataPBMC))/colSums(raw_dataPBMC), '*'))

这个sweep函数很有趣

它可以在apply的统一操作基础上,增加个性化服务(比如对每行/列使用不同的数值进行计算,而且可以指定计算方法)

例如,想要将1-3行分别减去对应的行号1-3,就可以这样:

> test <- matrix(1:12,ncol = 4,byrow = T)
> test
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12
> sweep(test,1,c(1,2,3),"-")
     [,1] [,2] [,3] [,4]
[1,]    0    1    2    3
[2,]    3    4    5    6
[3,]    6    7    8    9
  • 第一个位置test这里需要是矩阵或数据框;
  • 第二个位置12选一个,原理和apply一样
  • 第三个位置是要操作的向量,如果要对行操作,那么这个向量长度就要和行数一样
  • 第四个位置是计算符,比如:+ - * / < >

于是就能懂了这里的操作:先求每个细胞文库的总大小,然后用它的中位数除以总大小得到一个小数,然后按列乘以这个小数就相当于对文库进行了归一化,将文库本身的大小差异置之度外

自定义划分时间点

看看现在的细胞命名,其实我们看完文章是知道作者用了四个时间点的,当然,作者在做实验过程中,也会有自己的一套方法对不同时间点的细胞进行命名。比如作者这里的想法就是:

> head(colnames(dataPBMC))
[1] "AAACCTGAGCGAAGGG.1" "AAACCTGAGGTCATCT.1" "AAACCTGAGTCCTCCT.1"
[4] "AAACCTGCACCAGCAC.1" "AAACCTGGTAACGTTC.1" "AAACCTGGTAAGGATT.1"
> tail(colnames(dataPBMC))
[1] "TTTGTCAAGCGAGAAA.4" "TTTGTCAAGGAATTAC.4" "TTTGTCAAGTGCGTGA.4"
[4] "TTTGTCACACGAGGTA.4" "TTTGTCATCATTGCGA.4" "TTTGTCATCCACGCAG.4"

看到每个细胞barcode后面都有一个点号,然后接着数字1-4来区分四个时间点,并且是按照时间顺序来的,它们的对应顺序就是:

1 => PBMC_Pre
2 => PBMC_EarlyD27
3 => PBMC_RespD376
4 => PBMC_ARD614

作者的想法是:将数字提取出来,然后分别对应到具体时期名称(利用if else结构)

# 怎么提取?
# 作者利用的是Seurat V2的ExtractField函数
# for Seurat V2
timePoints <- sapply(colnames(dataPBMC), 
                     function(x) ExtractField(x, 2, '[.]'))
# 但如果使用V3,就要用常规方法strsplit,并且注意点号是正则匹配符,需要用\\来转义
timePoints <- sapply(colnames(dataPBMC), function(x) unlist(strsplit(x, "\\."))[2]) 
                     
> table(timePoints)
timePoints
   1    2    3    4 
2082 1592 4684 4516 

完成对应

timePoints <-ifelse(timePoints == '1', 'PBMC_Pre', 
                    ifelse(timePoints == '2', 'PBMC_EarlyD27',
                           ifelse(timePoints == '3', 'PBMC_RespD376', 'PBMC_ARD614')))

> table(timePoints)
timePoints
  PBMC_ARD614 PBMC_EarlyD27      PBMC_Pre PBMC_RespD376 
         4516          1592          2082          4684
对表达矩阵进行质控

主要看两点:

# 第一点:基因在多少细胞表达 
fivenum(apply(dataPBMC,1,function(x) sum(x>0) ))
# RP4-669L17.10         LAMB3         NAT10    AC093673.5         RPL21 
# 1             6            50           207         12102 
boxplot(apply(dataPBMC,1,function(x) sum(x>0) ))

# 第二点:细胞中有多少表达的基因
fivenum(apply(dataPBMC,2,function(x) sum(x>0) ))
# CAAGAAATCGATCCCT.2 GGCCGATTCCAGAGGA.3 TCAACGAAGAGCTGGT.3 
# 10                321                395 
# TGCCAAAGTCTGCGGT.4 TCTGGAATCTATCGCC.3 
# 481               2865 
hist(apply(dataPBMC,2,function(x) sum(x>0) ))

看到:在一万多个基因中,75%的基因只在200多个细胞中有表达;而在一万多个细胞中,75%的细胞也只表达不到500个基因。按照常理,10X的数据应该能做到平均表达800个基因

创建Seurat对象
# Seurat V2
PBMC <- CreateSeuratObject(raw.data = dataPBMC, 
                           min.cells = 1, min.genes = 0, project = '10x_PBMC')
# Seurat V3
PBMC <- CreateSeuratObject(dataPBMC, 
                           min.cells = 1, min.features = 0, project = '10x_PBMC')

> PBMC 
An object of class Seurat 
17712 features across 12874 samples within 1 assay 
Active assay: RNA (17712 features)
添加metadata
# Seurat V2 使用AddMetaData
# 3.0版本可以直接使用 object$name <- vector,当然也可以用AddMetaData
PBMC <- AddMetaData(object = PBMC, 
                    metadata = apply(raw_dataPBMC, 2, sum),
                    col.name = 'nUMI_raw')
PBMC <- AddMetaData(object = PBMC, metadata = timePoints, col.name = 'TimePoints')
聚类标准流程

标准化=》找高变异基因=》根据这些基因进行PCA降维=》根据PCA结果找分群=》TSNE降维=》可视化

# Seurat V2
PBMC <- ScaleData(object = PBMC, vars.to.regress = c('nUMI_raw'), model.use = 'linear', use.umi = FALSE)

PBMC <- FindVariableGenes(object = PBMC, mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)

PBMC <- RunPCA(object = PBMC, pc.genes = PBMC@var.genes)

PBMC <- FindClusters(object = PBMC, reduction.type = "pca", dims.use = 1:10, resolution = 1, k.param = 35, save.SNN = TRUE) # 13 clusters

PBMC <- RunTSNE(object = PBMC, dims.use = 1:10)

TSNEPlot(PBMC, colors.use = c('green4', 'pink', '#FF7F00', 'orchid', '#99c9fb', 'dodgerblue2', 'grey30', 'yellow', 'grey60', 'grey', 'red', '#FB9A99', 'black'))

如果使用Seurat V3,会发生一些变化

  • 3.0版本将FindVariableGenes换为FindVariableFeatures,另外将原来的cutoff进行整合,x轴统一归到mean.cutoff中,y轴归到dispersion.cutoff

    PBMC <- FindVariableFeatures(object = PBMC, mean.function = ExpMean, dispersion.function = LogVMR, mean.cutoff = c(0.0125,3), dispersion.cutoff = c(0.5,Inf))
    
  • 3.0版本将FindClusters拆分为FindNeighborsFindClusters,而版本2只有一个函数FindClusters

    PBMC <- FindNeighbors(PBMC, reduction = "pca", dims = 1:10,
                          k.param = 35)
    PBMC <- FindClusters(object = PBMC, 
                         resolution = 1, verbose=F) 
    
  • 3.0版本在最后的可视化上可以使用DimPlotTSNEPlot,颜色参数变成了cols

    DimPlot(PBMC, cols = c('green4', 'pink', '#FF7F00', 'orchid', '#99c9fb', 'dodgerblue2', 'grey30', 'yellow', 'grey60', 'grey', 'red', '#FB9A99', 'black'))
    
    3.0的结果

    【注意】如果参数使用不正确,DimPlot或TSNEPlot会调用默认颜色设置,例如使用参数colorscolors.use都是V3不识别的,因此它不会按照我们的颜色操作,而是生成类似这种:

保存对象
save(PBMC,file = 'patient1.PBMC.output.Rdata')
# 结果有1.9G

附加 一个问题:Seurat2、3得到的结果差别大吗?

就看最后的TSNE聚类图,上面用Seurat3操作了一遍,虽然使用了和作者一样的数据,但结果和原文还是差别很大。

原文聚类结果

那么原因真的是由于版本引起的吗?使用作者的V2会不会好一些?

下面进行V2测试

8min跑一遍

rm(list = ls()) 
options(warn=-1) 
suppressMessages(library(Seurat))

#############################
# 读取表达矩阵
#############################
start_time <- Sys.time()
raw_dataPBMC <- read.csv('./GSE117988_raw.expMatrix_PBMC.csv.gz', header = TRUE, row.names = 1)


## step1: 归一化
dataPBMC <- log2(1 + sweep(raw_dataPBMC, 2, 
                           median(colSums(raw_dataPBMC))/colSums(raw_dataPBMC), '*')) # Normalization


## step2: 自定义划分时间点
# 作者利用的是Seurat V2的ExtractField函数
# for Seurat V2
timePoints <- sapply(colnames(dataPBMC), 
                     function(x) ExtractField(x, 2, '[.]'))

timePoints <-ifelse(timePoints == '1', 'PBMC_Pre', 
                    ifelse(timePoints == '2', 'PBMC_EarlyD27',
                           ifelse(timePoints == '3', 'PBMC_RespD376', 'PBMC_ARD614')))

## step3: 表达矩阵质控
# 第一点:基因在多少细胞表达 
fivenum(apply(dataPBMC,1,function(x) sum(x>0) ))
# 第二点:细胞中有多少表达的基因
fivenum(apply(dataPBMC,2,function(x) sum(x>0) ))

## step4: 创建Seurat对象
PBMC <- CreateSeuratObject(dataPBMC, 
                           min.cells = 1, min.features = 0, project = '10x_PBMC')
PBMC # 17,712 genes and 12,874 cells

## step5: 添加metadata (nUMI and timePoints)
PBMC <- AddMetaData(object = PBMC, metadata = apply(raw_dataPBMC, 2, sum), col.name = 'nUMI_raw')
PBMC <- AddMetaData(object = PBMC, metadata = timePoints, col.name = 'TimePoints')

## step6:  聚类标准流程
# Seurat V2
PBMC <- ScaleData(object = PBMC, vars.to.regress = c('nUMI_raw'), model.use = 'linear', use.umi = FALSE)
PBMC <- FindVariableGenes(object = PBMC, mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)
PBMC <- RunPCA(object = PBMC, pc.genes = PBMC@var.genes)
PBMC <- FindClusters(object = PBMC, reduction.type = "pca", dims.use = 1:10, resolution = 1, k.param = 35, save.SNN = TRUE) # 13 clusters
PBMC <- RunTSNE(object = PBMC, dims.use = 1:10)
TSNEPlot(PBMC, colors.use = c('green4', 'pink', '#FF7F00', 'orchid', '#99c9fb', 'dodgerblue2', 'grey30', 'yellow', 'grey60', 'grey', 'red', '#FB9A99', 'black'))

end_time <- Sys.time()
end_time - start_time
# Time difference of 8.085459 mins
Seurat V2结果

探究一下Seurat2和3的分群结果

起初我认为这两个版本的差异蛮大的,因为看tsne图明显感觉V2更好一些,导致我得出了错误的结论,认为两个版本的包处理结果千差万别。实际上,站在作者的角度思考一下,他也不会允许自己的“孩子”在成长过程中出现太大的偏差

学到了一点:图片不能说明问题 ,需要用数据来表现它们之间的分群结果到底差异大不大

下面👇就用数据来证明:

V2的Seurat得到了13群,V3利用resolution = 0.9得到了13群,而使用和V2一样的resolution = 1 会得到14群

主要使用table看一下比较结果

如果直接使用table(PBMC@meta.data$res.1),那么就会出现以下情况:

> table(PBMC@meta.data$res.1)

   0    1   10   11   12    2    3    4    5    6    7    8    9 
1877 1859  219  212  191 1569 1414 1322 1321 1123  772  595  400
# 发现虽然是13群,但10、11、12出现在了1以后,很明显这是由于字符串ascii排序的原因,在linux中常见
> class(PBMC@meta.data$res.1)
[1] "character"
# 使用数值型就会和平常一样
> table(as.numeric(PBMC@meta.data$res.1))

   0    1    2    3    4    5    6    7    8    9   10   11   12 
1877 1859 1569 1414 1322 1321 1123  772  595  400  219  212  191

横着的0-12是V2得到的PBMC,竖着的0-12是V3得到的PBMC_V3。看到V2的第1群在V3中分成了第4和第2群【在图中显示就是原文图中粉色群 = V3得到的橙色和浅蓝色(如下图)】;V2的第6群在V3中分成了第6和9群

> table(PBMC_V3$RNA_snn_res.0.9,as.numeric(PBMC@meta.data$res.1))
    
        0    1    2    3    4    5    6    7    8    9   10   11   12
  0  1873    1    0    0    0    0    0    0    3    7    0    0    0
  1     0    0  224    0 1094  277    0    0   10    1    3    0    1
  2     0  420 1101    0   37    2    0    0    4    2   40    0    0
  3     0    0    0 1379    0    0    0   82   60   17    0    5    0
  4     0 1418   53    0    0    0    0    0    0    7   15    0    0
  5     0    2   47    0   93 1029    0    0    6    0    1    1    0
  6     0    0    1    0    1    0  887    0    0    0    0    0   32
  7     0    0    0   13    0    0    0  648    0    6    0    2    0
  8     1   17    3    3   21   11    0   12  500    5    0    0    0
  9     1    1    0    1    0    0  236    0    2    0    0    0  158
  10    2    0    1   11    1    0    0   12    1  354    2    1    0
  11    0    0  139    0   75    2    0    0    9    1  158    0    0
  12    0    0    0    7    0    0    0   18    0    0    0  203    0
V2的第1群在V3中分成了第4和第2群

但是,这个结果说明了:V2、V3处理同一组数据,结果其实相差并不大。并不是像我们想象的,图片差距大,结果差距就大。真实情况可能是本来的某一群在另一种处理中被分得离散一些。但是tSNE本来就是这样,图中的距离并不代表真实的差异,它的运行次数会直接导致最后的图片形态不同

关于tsne这个流行的算法,有必要了解一下:
  • tsne的作者Laurens强调,可以通过t-SNE的可视化图提出一些假设,但是不要用t-SNE来得出一些结论,想要验证你的想法,最好用一些其他的办法。
  • t-SNE中集群之间的距离并不表示相似度 ,同一个数据上运行t-SNE算法多次,很有可能得到多个不同“形态”的集群。但话说回来,真正有差异的群体之间,不管怎么变换形态,它们还是有差别
  • 关于perplexity的使用:(默认值是30) 如果忽视了perplexity带来的影响,有的时候遇到t-SNE可视化效果不好时,对于问题无从下手。perplexity表示了近邻的数量,例如设perplexity为2,那么就很有可能得到很多两个一对的小集群。
    t-SNE中集群之间的距离并不表示相似度
  • 有的时候会出现同一集群被分为两半的情况,但群间的距离并不能说明什么,解决这个问题,只需要跑多次找出效果最好的就可以了

引用自: https://bindog.github.io/blog/2018/07/31/t-sne-tips/
很好的tsne可视化:https://distill.pub/2016/misread-tsne/c


结尾

  • Seurat两个版本的结果的确存在不同,但不至于差异太大。它们的tSNE聚类结果“看似差异大”,其实是我们误认为tSNE图中的点之间距离代表了相似性。就像上面V3图中的两群分开的红点,它们其实还是一群,只不过此时此刻的映射坐标是这样的,而V2的映射坐标正好把它们映射到了相近的位置而已。也许多运行几次,使用不同的perplexity参数,V3的结果又会发生变化

  • 数据胜于图片,使用table比较是相对于肉眼观察图片更有效的方式。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351