2019-01-21 Seq2Seq模型涉及的函数

  1. tf.contrib.layers.embed_sequence
    该函数的原型是:
embed_sequence(
    ids,
    vocab_size=None,
    embed_dim=None,
    unique=False,
    initializer=None,
    regularizer=None,
    trainable=True,
    scope=None,
    reuse=None
)   

该函数将输入的ids,转换成embeddings,输入的id是整型的维数为[batch_size, doc_length] 的张量,返回维数为[batch_size, doc_length, embed_dim]的张量。

  1. tf.strided_slice
    该函数的原型是:
strided_slice(
    input_,
    begin,
    end,
    strides=None,
    begin_mask=0,
    end_mask=0,
    ellipsis_mask=0,
    new_axis_mask=0,
    shrink_axis_mask=0,
    var=None,
    name=None
)

有四个参数,input,begin,end和strides。begin和input以及strides和input的维数要一致。begin,end和strides决定了input的每一维要如何剪切。这里end是闭区间。

data = [[[1, 1, 1], [2, 2, 2]],
            [[3, 3, 3], [4, 4, 4]],
            [[5, 5, 5], [6, 6, 6]]]
x = tf.strided_slice(data,[0,0,0],[1,1,1])
y = tf.strided_slice(data,[0,0,0],[2,2,2],[1,1,1])
z = tf.strided_slice(data,[0,0,0],[2,2,2],[1,2,1])
with tf.Session() as sess:
    print(sess.run(x))
    print(sess.run(y))
    print(sess.run(z))

输出为:
x[[[1]]]
y[[[1 1][2 2]]
[[3 3][4 4]]]
z[[[1 1]]
[[3 3]]]

x的输出为[[[1]]],因为在每一维我们只截取[0,1),因此只保留了[0,0,0]这里的元素,即1。y在每一位截取[0,2),且步长为1,因此剩了8个元素。而z在第二维的步长是2,因此保留[0,0,0],[1,0,0],[1,0,1],[0,0,1]四个元素。

  1. tf.nn.embedding_lookup
    该函数的原型是:
embedding_lookup(
    params,
    ids,
    partition_strategy='mod',
    name=None,
    validate_indices=True,
    max_norm=None
)

tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素。tf.nn.embedding_lookup(params, id):params就是输入张量,id就是张量对应的索引,其他的参数不介绍。看个例子吧:

c = np.random.random([10, 1])
b = tf.nn.embedding_lookup(c, [1, 3])
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print(sess.run(b))
    print(c)

输出为:
[[ 0.94285588]
[ 0.75749925]]
[[ 0.69653103]
[ 0.94285588]
[ 0.23237639]
[ 0.75749925]
[ 0.53966384]
[ 0.05784376]
[ 0.80573055]
[ 0.90221424]
[ 0.34374387]
[ 0.51868458]]

可以看到,embedding_lookup选择了c中的索引为1和3的元素返回。

  1. tensorflow.ayers.Dense
    Dense是一个构建全链接层的类,如下面的例子:
output_layer = Dense(target_vocab_size,kernel_initializer=tf.truncated_normal_initializer(mean=0.1,stddev=0.1))

target_vocab_size定义了神经元的个数。

  1. tf.contrib.seq2seq.TrainingHelper
    这是用于seq2seq中帮助建立Decoder的一个类,只能在训练时使用,示例代码如下:
helper = tf.contrib.seq2seq.TrainingHelper(
    input=input_vectors,
    sequence_length=input_lengths)
  1. tf.contrib.seq2seq.GreedyEmbeddingHelper
    这是用于seq2seq中帮助建立Decoder的一个类,在预测时使用,示例代码如下:
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
      embedding=embedding,
      start_tokens=tf.tile([GO_SYMBOL], [batch_size]),
      end_token=END_SYMBOL)

start_tokens是预测时每个输入的开头的一个标志。

  1. tf.contrib.seq2seq.BasicDecoder
    用于构造一个decoder,示例代码如下
decoder = tf.contrib.seq2seq.BasicDecoder(
    cell=cell,
    helper=helper,
    initial_state=cell.zero_state(batch_size, tf.float32))
  1. tf.contrib.seq2seq.dynamic_decode
    用于构造一个动态的decoder,返回的内容是:

(final_outputs, final_state, final_sequence_lengths).

其中,final_outputs是一个namedtuple,里面包含两项(rnn_outputs, sample_id)
rnn_output: [batch_size, decoder_targets_length, vocab_size],保存decode每个时刻每个单词的概率,可以用来计算loss
sample_id: [batch_size], tf.int32,保存最终的编码结果。可以表示最后的答案

示例代码如下

outputs, _ = tf.contrib.seq2seq.dynamic_decode(
   decoder=decoder,
   output_time_major=False,
   impute_finished=True,
   maximum_iterations=20)

上面的5-8结合使用,可以构造一个完整的Decoder:

cell = # instance of RNNCellif mode == "train":
  helper = tf.contrib.seq2seq.TrainingHelper(
    input=input_vectors,
    sequence_length=input_lengths)elif mode == "infer":
  helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
      embedding=embedding,
      start_tokens=tf.tile([GO_SYMBOL], [batch_size]),
      end_token=END_SYMBOL)

decoder = tf.contrib.seq2seq.BasicDecoder(
    cell=cell,
    helper=helper,
    initial_state=cell.zero_state(batch_size, tf.float32))
outputs, _ = tf.contrib.seq2seq.dynamic_decode(
   decoder=decoder,
   output_time_major=False,
   impute_finished=True,
   maximum_iterations=20)
  1. tf.tile
    该函数的原型是:
tile(
    input,
    multiples,
    name=None
)

tf.tile主要的功能就是在tensorflow中对矩阵进行自身进行复制的功能,比如按行进行复制,或是按列进行复制,如下面的例子:

a = tf.constant([[1, 2],[2, 3],[3, 4]], dtype=tf.float32)
tile_a_1 = tf.tile(a, [1,2])
tile_a_2 = tf.tile(a,[2,1])
tile_a_3 = tf.tile(a,[2,2])
with tf.Session() as sess:
    print(sess.run(tile_a_1))
    print(sess.run(tile_a_2))
    print(sess.run(tile_a_3))

输出为:
[[ 1. 2. 1. 2.]
[ 2. 3. 2. 3.]
[ 3. 4. 3. 4.]]
[[ 1. 2.]
[ 2. 3.]
[ 3. 4.]
[ 1. 2.]
[ 2. 3.]
[ 3. 4.]]
[[ 1. 2. 1. 2.]
[ 2. 3. 2. 3.]
[ 3. 4. 3. 4.]
[ 1. 2. 1. 2.]
[ 2. 3. 2. 3.]
[ 3. 4. 3. 4.]]
第一次按第二维复制了两倍,即列数变成了两倍,第二次是第一维复制了两倍,所以行数变成了两倍。第三次是两个维度都复制两倍,因此横向纵向都变成了两倍长。
10 .tf.identity
该函数的原型是:

identity(
    input,
    name=None
)

该函数用于返回一个跟input一样维度和内容的张量。

  1. tf.sequence_mask
    该函数的原型是:
sequence_mask(
    lengths,
    maxlen=None,
    dtype=tf.bool,
    name=None
)

lengths代表的是一个一维数组,代表每一个sequence的长度,那么该函数返回的是一个mask的张量,张量的维数是:(lengths.shape,maxlen):

例如:
tf.sequence_mask([1, 3, 2], 5)
输出为:
[[True, False, False, False, False],
[True, True, True, False, False],
[True, True, False, False, False]]

  1. tf.contrib.seq2seq.sequence_loss
    该函数的原型是:
sequence_loss(
    logits,
    targets,
    weights,
    average_across_timesteps=True,
    average_across_batch=True,
    softmax_loss_function=None,
    name=None
)

用于计算seq2seq中的loss。当我们的输入是不定长的时候,weights参数常常使用我们1.11中得到的mask。

  1. tf.train.AdamOptimizer
    我们都知道,我们进行训练需要使用一个优化器,这里我并不是想讲AdamOptimizer,你当然可以使用其他的优化器。这里我们想要介绍的是在使用优化器之后,我们想要对什么进行优化,在之前的代码中,我们可能用tf.train.Optimizer.minimize更多,这个函数用于最小化loss,并更新var_list。这个函数其实可以拆解成两个函数来实现同样的功能:
tf.train.Optimizer.compute_gradients(loss,var_list=None, gate_gradients=1,

aggregation_method=None,

colocate_gradients_with_ops=False, grad_loss=None)

该函数对var_list中的变量计算loss的梯度

该函数为函数minimize()的第一部分,返回一个以元组(gradient, variable)组成的列表。

tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None) 

该函数将计算出的梯度应用到变量上,是函数minimize()的第二部分,返回一个应用指定的梯度的操作Operation,对global_step做自增操作。
本文中,将使用以上两个函数来对loss进行优化。

  1. tf.contrib.rnn.LSTMCell
    用于构建一个LSTMCell的类,示例如下:
    lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
    rnn_size就是我们隐藏层的神经元的数量。
  2. tf.contrib.rnn.MultiRNNCell
    用于构建多层RNN的类,需要传入一个cell的list,示例如下:
def get_decoder_cell(rnn_size):
        decoder_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
        return decoder_cell

cell = tf.contrib.rnn.MultiRNNCell([get_decoder_cell(rnn_size) for _ in range(num_layers)])
  1. tf.nn.dynamic_rnn
    该函数的原型是:
dynamic_rnn(
    cell,
    inputs,
    sequence_length=None,
    initial_state=None,
    dtype=None,
    parallel_iterations=None,
    swap_memory=False,
    time_major=False,
    scope=None
)

用于构造一个动态的rnn模型,返回模型的输出,以及state的值,如果是lstm,那么state是一个tuple,有短时记忆c和长时记忆h。示例如下:

rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]

create a RNN cell composed sequentially of a number of RNNCells
multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers)
'outputs' is a tensor of shape [batch_size, max_time, 256]# 'state' is a N-tuple where N is the number of LSTMCells containing a# tf.contrib.rnn.LSTMStateTuple for each cell
outputs, state = tf.nn.dynamic_rnn(cell=multi_rnn_cell,
                                   inputs=data,
                                   dtype=tf.float32)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354