在第一篇job 的类设计结构中,已经说过job最终执行会在quartz中执行LiteJob该作业,LiteJob中怎样去保证作业的执行的?
再看一下LiteJob的类图:
分析下来,job的执行过程是这张图的样子,比较大:
public final class LiteJob implements Job {
@Setter
private ElasticJob elasticJob;
@Setter
private JobFacade jobFacade;
@Override
public void execute(final JobExecutionContext context) throws JobExecutionException {
JobExecutorFactory.getJobExecutor(elasticJob, jobFacade).execute();
}
}
//接上代码获取执行器
public static AbstractElasticJobExecutor getJobExecutor(final ElasticJob elasticJob, final JobFacade jobFacade) {
if (null == elasticJob) {
return new ScriptJobExecutor(jobFacade);
}
if (elasticJob instanceof SimpleJob) {
return new SimpleJobExecutor((SimpleJob) elasticJob, jobFacade);
}
if (elasticJob instanceof DataflowJob) {
return new DataflowJobExecutor((DataflowJob) elasticJob, jobFacade);
}
throw new JobConfigurationException("Cannot support job type '%s'", elasticJob.getClass().getCanonicalName());
}
在执行过程中,首先会根据elasticJob的类型(也就是我们在使用elasticJob的过程中,配置的类型)去找到相应的执行器,(ScriptJobExecutor,DataflowJobExecutor,DataflowJobExecutor均实现AbstractElasticJobExecutor接口)。
//AbstractElasticJobExecutor.java 构造方法
protected AbstractElasticJobExecutor(final JobFacade jobFacade) {
this.jobFacade = jobFacade;
jobRootConfig = jobFacade.loadJobRootConfiguration(true);
jobName = jobRootConfig.getTypeConfig().getCoreConfig().getJobName();
executorService = ExecutorServiceHandlerRegistry.getExecutorServiceHandler(jobName, (ExecutorServiceHandler) getHandler(JobProperties.JobPropertiesEnum.EXECUTOR_SERVICE_HANDLER));
jobExceptionHandler = (JobExceptionHandler) getHandler(JobProperties.JobPropertiesEnum.JOB_EXCEPTION_HANDLER);
itemErrorMessages = new ConcurrentHashMap<>(jobRootConfig.getTypeConfig().getCoreConfig().getShardingTotalCount(), 1);
}
从执行器的抽象父类构造方法看,首先会去通过jobFacade然后用configService获取获取job的配置,然后获取一个执行器服务executorService(没有就创建一个executor-service-handler,不配置走默认配置),再获取异常处理器jobExceptionHandler(作业配置项executor-service-handler,不配置走默认配置)。
然后看一下job的执行过程:
public final void execute() {
try {
//检查环境
jobFacade.checkJobExecutionEnvironment();
} catch (final JobExecutionEnvironmentException cause) {
jobExceptionHandler.handleException(jobName, cause);
}
//获取分片上下文
ShardingContexts shardingContexts = jobFacade.getShardingContexts();
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_STAGING, String.format("Job '%s' execute begin.", jobName));
}
//是否有运行中的任务
if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
"Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobName,
shardingContexts.getShardingItemParameters().keySet()));
}
return;
}
try {
//通知作业监听对象,作业要开始执行
jobFacade.beforeJobExecuted(shardingContexts);
//CHECKSTYLE:OFF
} catch (final Throwable cause) {
//CHECKSTYLE:ON
jobExceptionHandler.handleException(jobName, cause);
}
//执行逻辑
execute(shardingContexts, JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);
while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
execute(shardingContexts, JobExecutionEvent.ExecutionSource.MISFIRE);
}
jobFacade.failoverIfNecessary();
try {
//执行结束之后,告诉监听器,作业执行结束
jobFacade.afterJobExecuted(shardingContexts);
//CHECKSTYLE:OFF
} catch (final Throwable cause) {
//CHECKSTYLE:ON
jobExceptionHandler.handleException(jobName, cause);
}
}
首先检查环境,jobFacade.checkJobExecutionEnvironment();看一下服务器时间与注册中心的时间误差秒数是否在允许范围,配置项:max-time-diff-seconds,-1为不校验时间误差,默认为-1;然后获取分片参数:
@Override
public ShardingContexts getShardingContexts() {
boolean isFailover = configService.load(true).isFailover();
if (isFailover) {
List<Integer> failoverShardingItems = failoverService.getLocalFailoverItems();
if (!failoverShardingItems.isEmpty()) {
return executionContextService.getJobShardingContext(failoverShardingItems);
}
}
shardingService.shardingIfNecessary();
List<Integer> shardingItems = shardingService.getLocalShardingItems();
if (isFailover) {
shardingItems.removeAll(failoverService.getLocalTakeOffItems());
}
shardingItems.removeAll(executionService.getDisabledItems(shardingItems));
return executionContextService.getJobShardingContext(shardingItems);
}
获取分片上下文,首先判断是否执行failOver(失效转移,配置项failOver,默认配置项为false)若分片失效转移为false,则会取判断是否需要分片,做一系列分片逻辑,这里会去加载配置项job-sharding-strategy-class分片策略类,按照策略类分配分片策略,在这里,会去选举主节点,然后从zk更新看是否有上次任务没有做完的情况,有的话会等到上次作业做完,然后重新分片,创建processing节点,再将禁用的分片项去除掉,如果失效转移,则将失效转移的分片项也去除掉。在这里,会去读取配置配置项sharding-total-count,job-parameter, 组装ShardingContexts。
jobFacade.beforeJobExecuted(shardingContexts);代码是通知监听的listener,看代码:
@Override
public void beforeJobExecuted(final ShardingContexts shardingContexts) {
for (ElasticJobListener each : elasticJobListeners) {
each.beforeJobExecuted(shardingContexts);
}
}
execute(shardingContexts,JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);这个方法里,根据分片项判断是否有分片,没有分片项,结束掉调度的执行,如果需要向上抛出事件的,抛出已完成事件,结束任务。有分片任务的,去注册作业启动信息,开始执行作业,执行结束之后,将注册信息改为结束状态(改掉JobRegistry的状态和zk的记录)。
private void execute(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
if (shardingContexts.getShardingItemParameters().isEmpty()) {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobName));
}
return;
}
jobFacade.registerJobBegin(shardingContexts);
String taskId = shardingContexts.getTaskId();
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
}
try {
process(shardingContexts, executionSource);
} finally {
// TODO 考虑增加作业失败的状态,并且考虑如何处理作业失败的整体回路
//注册作业的完成
jobFacade.registerJobCompleted(shardingContexts);
if (itemErrorMessages.isEmpty()) {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
}
} else {
//是否发送jobEvent
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
}
}
}
}
在registerJobBegin注册作业启动信息的时候,首先改了JobRegistry的作业运行状态,JobRegistry该单例对象维护了所有job的相关信息。其次,如果监控任务执行状态,则创建作业的临时节点。
/**
* 注册作业启动信息.
*
* @param shardingContexts 分片上下文
*/
public void registerJobBegin(final ShardingContexts shardingContexts) {
JobRegistry.getInstance().setJobRunning(jobName, true);
if (!configService.load(true).isMonitorExecution()) {
return;
}
for (int each : shardingContexts.getShardingItemParameters().keySet()) {
jobNodeStorage.fillEphemeralJobNode(ShardingNode.getRunningNode(each), "");
}
}
而在作业的执行过程中,如果作业只有一个分片,则直接去处理作业的请求,如果多于一个,则使用计数器,等所有分片项处理完成再去统一返回,而不是各自分片完成自己的分片任务就返回。
private void process(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
Collection<Integer> items = shardingContexts.getShardingItemParameters().keySet();
if (1 == items.size()) {
int item = shardingContexts.getShardingItemParameters().keySet().iterator().next();
JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, item);
process(shardingContexts, item, jobExecutionEvent);
return;
}
final CountDownLatch latch = new CountDownLatch(items.size());
for (final int each : items) {
final JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, each);
if (executorService.isShutdown()) {
return;
}
executorService.submit(new Runnable() {
@Override
public void run() {
try {
process(shardingContexts, each, jobExecutionEvent);
} finally {
latch.countDown();
}
}
});
}
try {
latch.await();
} catch (final InterruptedException ex) {
Thread.currentThread().interrupt();
}
}
作业请求的处理,会去调用AbstractElasticJobExecutor的process方法,在这个方法里,会直接调用三种基本类型的job的execute方法,也就是我们定义job bean的方法,具体看下面代码:
private void process(final ShardingContexts shardingContexts, final int item, final JobExecutionEvent startEvent) {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobExecutionEvent(startEvent);
}
log.trace("Job '{}' executing, item is: '{}'.", jobName, item);
JobExecutionEvent completeEvent;
try {
//在这里会直接调用三种基本任务的execute方法,
//该process方法执行的是 AbstractElasticJobExecutor
//的process抽象方法,具体的实现类可看下面代码
process(new ShardingContext(shardingContexts, item));
completeEvent = startEvent.executionSuccess();
log.trace("Job '{}' executed, item is: '{}'.", jobName, item);
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobExecutionEvent(completeEvent);
}
// CHECKSTYLE:OFF
} catch (final Throwable cause) {
// CHECKSTYLE:ON
completeEvent = startEvent.executionFailure(cause);
jobFacade.postJobExecutionEvent(completeEvent);
itemErrorMessages.put(item, ExceptionUtil.transform(cause));
jobExceptionHandler.handleException(jobName, cause);
}
}
//AbstractElasticJobExecutor的实现类
public final class SimpleJobExecutor extends AbstractElasticJobExecutor {
private final SimpleJob simpleJob;
public SimpleJobExecutor(final SimpleJob simpleJob, final JobFacade jobFacade) {
super(jobFacade);
this.simpleJob = simpleJob;
}
//process方法实质会调用三种基本任务的execute方法,就是我们配置的作业的执行方法。
@Override
protected void process(final ShardingContext shardingContext) {
simpleJob.execute(shardingContext);
}
}
jobFacade.failoverIfNecessary();作业执行完成之后,判断是否需要失效转移,再然后 jobFacade.afterJobExecuted(shardingContexts);通知监听的Listenter改作业执行完成。
@Override
public void afterJobExecuted(final ShardingContexts shardingContexts) {
for (ElasticJobListener each : elasticJobListeners) {
each.afterJobExecuted(shardingContexts);
}
}