(爬虫)书籍和电影,程序员不可或缺

周五, 由于同事给了一个下载书籍的网站。所以心血来潮,想写一个爬虫demo,把数据都爬下来。然后发现一个电影网站也是类似,于是乎。代码重用。

爬虫步骤

  1. 分析目标网页的特征
  2. 找到需要爬取的数据
  3. 多页面数据的跳转
  4. 数据存储

1. 分析目标网页的特征

我今天要爬取的页面数据就是 周读, http://www.ireadweek.com/, 页面结构很简答,先是使用requests + bs4配合爬取。发现页面没有使用js,也没有做反爬虫的机制,所以很简单。

这个网站就两层结构, 主页->点击每个书籍->进入到书籍的详情页。我需要的数据也就是在详情页。如下图:

2. 找到需要爬取的数据


上图中标记的都是需要爬取的数据
使用bs4格式化数据,发现数据很容易获得,每个数据都很简单。页面标签修饰都没有,像class,id都没有,像是一个只会html的外行写的。我一个后端,也能笑话别人的页面_.
数据抽取的代码如下:

        html_doc = response.body
        soup = BeautifulSoup(html_doc, 'html.parser')

        img_url = urljoin(CDN, soup.find('img').attrs.get('src').replace('//','/'))
        download_url = soup.find('a', class_='downloads').attrs.get('href')
        title = soup.find_all('div', class_='hanghang-za-title')
        name = title[0].text

        content = soup.find_all('div', class_='hanghang-za-content')
        author_info = content[0].text
        directory = '\n'.join([i.text.replace("\u3000", '') for i in content[1].find_all('p')])

        info = soup.find('div', class_='hanghang-shu-content-font').find_all('p')

        author = info[0].text.split('作者:')[1]
        category = info[1].text.split('分类:')[1]
        score = info[2].text.split('豆瓣评分:')[1]
        introduction = info[4].text

3.多页面数据的跳转

这个主要是处理页面之间的跳转。就是使用下面的页码进行页面的跳转,我使用下一页


然后再抓取,继续迭代就可以了。

        next_url = urljoin(DOMAIN, soup.find_all('a')[-2].attrs.get('href'))
        yield scrapy.Request(next_url, callback=self.parse)

由于没有使用具体的id,class,只能使用位置索引。

4.数据存储

数据存储,以前都是写到excel中或redis中,今天想写到mysql中,写到mysql可以使用pymysql或mysqlDB。 我选择使用ORM。 可以是SQLALCHEMY, Django Model. 我选择的是django model.

# django中
from django.db import models


# Create your models here.
class Book(models.Model):
    id = models.IntegerField(primary_key=True)
    name = models.CharField(max_length=255)
    author = models.CharField(max_length=255)
    category = models.CharField(max_length=255)
    score = models.CharField(max_length=100)
    img_url = models.URLField()
    download_url = models.URLField()
    introduction = models.CharField(max_length=2048)
    author_info = models.CharField(max_length=2048)
    directory = models.CharField(max_length=4096)
    create_edit = models.DateTimeField(auto_now_add=True)

    class Meta:
        managed = False
        db_table = "ireadweek"

# scrapy settings.py配置
import os
import sys
import django

sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), ".."))
os.environ['DJANGO_SETTINGS_MODULE'] = 'Rino_nakasone_backend.settings'

django.setup()


# 在 scrapy中pipelines.py
from ireadweek.models import Book
import datetime


class RinonakasonePipeline(object):
    def process_item(self, item, spider):
        book = Book()
        book.name = item.get('name')
        book.author = item.get('author')
        book.category = item.get('category')
        book.score = item.get('score')
        book.image_url = item.get('image_url')
        book.download_url = item.get('download_url')
        book.introduction = item.get('introduction')
        book.author_info = item.get('author_info')
        book.directory = item.get('directory')
        book.create_edit = datetime.datetime.now()
        book.save()
        return item

# 在spider中引用

    def parse_news(self, response):
        item = IreadweekItem()
        html_doc = response.body
        soup = BeautifulSoup(html_doc, 'html.parser')

        img_url = urljoin(CDN, soup.find('img').attrs.get('src').replace('//','/'))
        download_url = soup.find('a', class_='downloads').attrs.get('href')
        title = soup.find_all('div', class_='hanghang-za-title')
        name = title[0].text

        content = soup.find_all('div', class_='hanghang-za-content')
        author_info = content[0].text
        directory = '\n'.join([i.text.replace("\u3000", '') for i in content[1].find_all('p')])

        info = soup.find('div', class_='hanghang-shu-content-font').find_all('p')

        author = info[0].text.split('作者:')[1]
        category = info[1].text.split('分类:')[1]
        score = info[2].text.split('豆瓣评分:')[1]
        introduction = info[4].text

        item['name'] = name
        item['img_url'] = img_url
        item['download_url'] = download_url
        item['author'] = author
        item['author_info'] = author_info
        item['category'] = category
        item['score'] = score
        item['introduction'] = introduction
        item['directory'] = directory

        return item

# 还有一个配置 settings.py
ITEM_PIPELINES = {
   'RinoNakasone.pipelines.RinonakasonePipeline': 300,
}

技术要点

  1. scrapy
  2. django
  3. beautifulsoup

以上都要会使用,我还写了一个api接口。
http://127.0.0.1:8080/api/ireadweek/list/?p=400&n=20

另外一个网站是:

我项目的地址: https://github.com/jacksonyoudi/Rino_nakasone_backend

代码都在项目中。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348

推荐阅读更多精彩内容

  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 171,749评论 25 707
  • 1 也许是进了某个牢笼抬头将看不见雨露看不见灯光背后星月搭建起的夜晚牢笼是牧羊人划下的圈雨露是最初寒夜对篝火的渴望...
    苏望阅读 298评论 4 6
  • 七绝/花蕊含香 作者:心博 一片云霞天际挂,三棵梨树院中栽。 春风和畅山村暖,花蕊含香笑着开。
    心博1阅读 281评论 0 0
  • 时间2017年4月22日 地点:家里卧室 1.我怎么如此幸运,我有如此帅气的行动力,今天早上给宝宝备好奶,查好路线...
    楼尚青阅读 103评论 2 0