java并发编程-原子类

原子类

原子操作是指不会被线程调度机制打断的操作,这种操作一旦开始,就一直运行到结束,中间不会有任何线程上下文切换。

原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序不可以被打乱,也不可以被切割而只执行其中的一部分,将整个操作视作一个整体是原子性的核心特征。

而 java.util.concurrent.atomic 下的类,就是具有原子性的类,可以原子性地执行添加、递增、递减等操作。比如之前多线程下的线程不安全的 i++ 问题,到了原子类这里,就可以用功能相同且线程安全的 getAndIncrement 方法来优雅地解决。

作用

原子类的作用和锁有类似之处,是为了保证并发情况下线程安全。不过原子类相比于锁,有一定的优势:

粒度更细:原子变量可以把竞争范围缩小到变量级别,通常情况下,锁的粒度都要大于原子变量的粒度。
效率更高:除了高度竞争的情况之外,使用原子类的效率通常会比使用同步互斥锁的效率更高,因为原子类底层利用了 CAS 操作,不会阻塞线程。

原子类概览

image.png

以 AtomicInteger 为例,分析在 Java 中如何利用 CAS 实现原子操作?

我们来看下 AtomicInteger 是如何通过 CAS 操作实现并发下的累加操作的,以其中一个重要方法 getAndAdd 方法为突破口。

public final int getAndAdd(int delta) {
   return unsafe.getAndAddInt(this, valueOffset, delta);
}

可以看出,里面使用了 Unsafe 这个类,并且调用了 unsafe.getAndAddInt 方法。所以这里需要简要介绍一下 Unsafe 类。

Unsafe 类

Unsafe 其实是 CAS 的核心类。由于 Java 无法直接访问底层操作系统,而是需要通过 native 方法来实现。不过尽管如此,JVM 还是留了一个后门,在 JDK 中有一个 Unsafe 类,它提供了硬件级别的原子操作,我们可以利用它直接操作内存数据。

那么我们就来看一下 AtomicInteger 的一些重要代码,如下所示:

public class AtomicInteger extends Number implements java.io.Serializable {
   // setup to use Unsafe.compareAndSwapInt for updates
   private static final Unsafe unsafe = Unsafe.getUnsafe();
   private static final long valueOffset;
 
   static {
       try {
           valueOffset = unsafe.objectFieldOffset
               (AtomicInteger.class.getDeclaredField("value"));
       } catch (Exception ex) { throw new Error(ex); }
   }
 
   private volatile int value;
   public final int get() {return value;}
   ...
}

可以看出,在数据定义的部分,首先还获取了 Unsafe 实例,并且定义了 valueOffset。往下看到 static 代码块,这个代码块会在类加载的时候执行,执行时会调用 Unsafe 的 objectFieldOffset 方法,从而得到当前这个原子类的 value 的偏移量,并且赋给 valueOffset 变量,这样一来就获取到了 value 的偏移量,它的含义是在内存中的偏移地址,因为 Unsafe 就是根据内存偏移地址获取数据的原值的,这样就能通过 Unsafe 来实现 CAS 了。

value 是用 volatile 修饰的,它就是原子类存储的值的变量,由于它被 volatile 修饰,就可以保证在多线程之间看到的 value 是同一份,保证了可见性。

接下来继续看 Unsafe 的 getAndAddInt 方法的实现,代码如下:

public final int getAndAddInt(Object var1, long var2, int var4) {
   int var5;
   do {
       var5 = this.getIntVolatile(var1, var2);
   } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
   return var5;
}

首先看一下结构,它是一个 do-while 循环,所以这是一个死循环,直到满足循环的退出条件时才可以退出。

do 后面的这一行代码 var5 = this.getIntVolatile(var1, var2)是个 native 方法,作用就是获取在 var1 中的 var2 偏移处的值。

传入的两个参数,第一个就是当前原子类,第二个是最开始获取到的 offset,这样一来就可以获取到当前内存中偏移量的值,并且保存到 var5 里面。此时 var5 实际上代表当前时刻下的原子类的数值。

现在再来看 while 的退出条件,也就是 compareAndSwapInt 这个方法,它一共传入了 4 个参数,这 4 个参数是 var1、var2、var5、var5 + var4,为了方便理解,给它们取了新了变量名,分别 object、offset、expectedValue、newValue,具体含义如下:

  • 第一个参数 object 就是将要操作的对象,传入的是 this,也就是 atomicInteger 这个对象本身;
  • 第二个参数是 offset,也就是偏移量,借助它就可以获取到 value 的数值;
  • 第三个参数 expectedValue,代表“期望值”,传入的是刚才获取到的 var5;
  • 最后一个参数 newValue 是希望修改的数值 ,等于之前取到的数值 var5 再加上 var4,而 var4 就是之前所传入的 delta,delta 就是希望原子类所改变的数值,比如可以传入 +1,也可以传入 -1。
    所以 compareAndSwapInt 方法的作用就是,判断如果现在原子类里 value 的值和之前获取到的 var5 相等的话,那么就把计算出来的 var5 + var4 给更新上去,所以说这行代码就实现了 CAS 的过程。

一旦 CAS 操作成功,就会退出这个 while 循环,但是也有可能操作失败。如果操作失败就意味着在获取到 var5 之后,并且在 CAS 操作之前,value 的数值已经发生变化了,证明有其他线程修改过这个变量。

这样一来,就会再次执行循环体里面的代码,重新获取 var5 的值,也就是获取最新的原子变量的数值,并且再次利用 CAS 去尝试更新,直到更新成功为止,所以这是一个死循环。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容