Scikit-learn中的DBSCAN及应用

DBSCAN

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法将簇看做高密度区域以从低密度区域中区分开。由于这个算法的一般性,DBSCAN建立的簇可以是任何形状的。相对的,K-means则假设簇是凸的。核样本的概念是DBSCAN的重要成分,核样本是指高密度区域的样本。一个簇是由互相靠近的核样本的集合以及靠近核样本的非核样本组成的集合组成的。这个算法有两个参数,

min_sampleseps ,这两个参数表示数据的稠密性。当min_samples增加 或者 eps 减小的时候,意味着一个簇分类有更大的密度要求。

若样本在数据集中存在eps距离内有至少min_samples,则该样本可以成为核样本。也用来定义边缘样本。核样本是向量空间的高密度区域。通过找到一个核样本,找到其附近的核样本,再找到附近核样本的附近的核样本递归地建立由核样本组成的簇。一个簇也包含邻居是核样本的非核样本。

根据定义,任何核样本是簇的一部分。任何距离核样本至少eps距离非核样本是异常值。

从下图中可以看到,不同的颜色表示不同的簇。大圈圈表示算法定义的核样本,小圈圈表示仍是簇的组成部分的非核样本。黑色点表示异常值。

dbscan_results

实现

这个算法是有随机性的,虽然标签会变化,但是核样本始终属于同一个簇。非确定性主要来自非核样本的归属。一个非核样本可能距离两个簇的非核样本都小于eps 。根据三角不等式,这两个核样本之间的距离大于eps,否则他们会属于同一个簇。非核样本将会属于先产生的簇,而簇产生的先后顺序是随机的。不考虑数据集的顺序,算法是确定性的,相同数据上的 结果也会相对稳定。

当先实现是使用球树和线段树来计算点的邻居,这避免了计算时全距离矩阵。可以使用一般的距离度量方法。

内存消耗

当前实现不是一个节约内存的算法,因为它建立了kd-tree和ball-tree不能使用的成对的相似矩阵。可以绕过这个的方法如下:

  • 可以通过metric='precomputed'计算稀疏的半径临近图,这会节省内存使用。
  • 数据可以压缩,或者使用BIRCH去掉数据中的重复值。然后大量的数据集将由小部分数据代表,可以使用sample_weight来拟合算法

使用说明

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, n_jobs=1)

参数 说明
eps float,可选
min_samples int,可选
metric string,用于计算特征向量之间的距离
algorithm {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’},可选
leaf_size 传递给球树,影响速度、内存,根据情况自己选择
p 明氏距离的幂次,用于计算距离
n_jobs CPU并行数
方法 说明
fit(X[, y, sample_weight]) 从特征矩阵进行聚类
fit_predict(X[, y, sample_weight]) 实行聚类并返回标签(n_samples, n_features)
get_params([deep]) 取得参数
set_params(**params) 设置参数
属性 类型 大小 说明
core_sample_indices_ array [n_core_samples] 核样本的目录
components_ array [n_core_samples, n_features] 训练样本的核样本
labels_ array [n_samples] 聚类标签。噪声样本标签为-1

例子

程序地址:http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

import numpy as np

from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler


##############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
                            random_state=0)

X = StandardScaler().fit_transform(X)

##############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
      % metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
      % metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
      % metrics.silhouette_score(X, labels))

##############################################################################
# Plot result
import matplotlib.pyplot as plt

# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
for k, col in zip(unique_labels, colors):
    if k == -1:
        # Black used for noise.
        col = 'k'

    class_member_mask = (labels == k)

    xy = X[class_member_mask & core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
             markeredgecolor='k', markersize=14)

    xy = X[class_member_mask & ~core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
             markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
../../_images/sphx_glr_plot_dbscan_001.png

应用

关键在于调节前面提到的两个参数,需要不断修正。如果需要测试数据,可以留言。

import scipy.io as sio
import numpy as np
from sklearn.cluster import DBSCAN
#from sklearn import metrics
import matplotlib.pyplot as plt

data_smile = sio.loadmat('data\smile.mat')

X = data_smile['smile'][:, :2]
labels_true = data_smile['smile'][:, 2]


db = DBSCAN(eps=0.05, min_samples=3).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
      

# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
for k, col in zip(unique_labels, colors):
    if k == -1:
        # Black used for noise.
        col = 'k'

    class_member_mask = (labels == k)

    xy = X[class_member_mask & core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
             markeredgecolor='k', markersize=14)

    xy = X[class_member_mask & ~core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
             markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show() 

参考

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,640评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,254评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,011评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,755评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,774评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,610评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,352评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,257评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,717评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,894评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,021评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,735评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,354评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,936评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,054评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,224评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,974评论 2 355

推荐阅读更多精彩内容