Surprise 框架

Surprise官方文档参考
源码参考

Surprise 是Python下的一个推荐算法实现的库,Python首选。
Surprise支持常见的推荐算法:

  • 基础算法(baseline algorithm)
  • 协同过滤算法(基于近邻算法)
  • 矩阵分解算法 matrix factorization-based(SVD PMF SVD++ NMF)
算法 描述
random.NormalPredictor() 基于统计的推荐系统预测打分,假定用户打分的分布是基于正态分布的
BaselineOnly 基于统计的基准预测线打分
knns.KNNBasic 基本的协同过滤算法
knns.KNNWithMeans 协同过滤算法的变种,考虑每个用户的平均评分
knns.KNNWithZScore 协同过滤算法的变种,考虑每个用户评分的归一化操作
knns.KNNBaseline 协同过滤算法的变种,考虑每个用户评分的基线
matrix_factorzation.SVD SVD 矩阵分解算法
matrix_factorzation.SVDpp SVD++ 矩阵分解算法
matrix_factorzation.NMF 一种非负矩阵分解的协同过滤算法
SlopeOne SlopeOne 协同过滤算法
相似度度量指标 描述
cosine 计算所有用户或者物品之间的余弦相似度
msd 计算所有用户或者物品之间的平均平方差相似度

基于统计的推荐算法

Normal Perdictor 认为用户对物品的评分是服从正态分布的,从而可以根据已有的评分的均值方差 预测当前用户对其他物品评分的分数。
f(r_{ui}) = \frac{1}{ \sqrt{2 \pi}\sigma_u}e^{-\frac{({r_{ui} - \mu_u)}^2 }{2 \sigma^2_u}}
基于大数定理或者使用最大似然估计

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容

  • 太长不读版:由推荐系统带来的推荐服务基本上已经渗透到我们生活的方方面面,本文作为浅谈推荐系统的基础篇,主要从下面几...
    stayrascal阅读 31,578评论 5 60
  • 协同过滤和推荐系统几乎可以划等号,协同过滤的重点在于“协同”,所谓协同,也就是群体互帮互助,互相支持是集体智慧的体...
    andyham阅读 1,702评论 0 3
  • 这篇文章的技术难度会低一些,主要是对推荐系统所涉及到的各部分内容进行介绍,以及给出一些推荐系统的常用算法,比起技术...
    城市中迷途小书童阅读 2,842评论 0 17
  • 1. 引言 许多数据分析应用都会涉及到从短文本中提取出潜在的主题,比如微博、短信、日志文件或者评论数据。一方面,提...
    Datartisan数据工匠阅读 7,030评论 0 11
  • 概述 建造者模式(Builder Pattern):将一个复杂对象的构建与表示分离,使构建过程能可以创建出不同的表...
    jxiu阅读 703评论 0 0