2020-01-25 索引

什么时候不用索引

在数据表中的数据行数比较少的情况下,比如不到 1000 行,是不需要创建索引的。另外,当数据重复度大,比如高于 10% 的时候,也不需要对这个字段使用索引。我之前讲到过,如果是性别这个字段,就不需要对它创建索引。这是为什么呢?如果你想要在 100 万行数据中查找其中的 50 万行(比如性别为男的数据),一旦创建了索引,你需要先访问 50 万次索引,然后再访问 50 万次数据表,这样加起来的开销比不使用索引可能还要大。

索引的种类

从功能逻辑上说,索引主要有 4 种,分别是普通索引、唯一索引、主键索引和全文索引。
1.普通索引是基础的索引,没有任何约束,主要用于提高查询效率。
2.唯一索引就是在普通索引的基础上增加了数据唯一性的约束,在一张数据表里可以有多个唯一索引。
3.主键索引在唯一索引的基础上增加了不为空的约束,也就是 NOT NULL+UNIQUE,一张表里最多只有一个主键索引。
4.全文索引用的不多,MySQL 自带的全文索引只支持英文。我们通常可以采用专门的全文搜索引擎,比如 ES(ElasticSearch) 和 Solr。
其实前三种索引(普通索引、唯一索引和主键索引)都是一类索引,只不过对数据的约束性逐渐提升。在一张数据表中只能有一个主键索引,这是由主键索引的物理实现方式决定的,因为数据存储在文件中只能按照一种顺序进行存储。但可以有多个普通索引或者多个唯一索引。

按照物理实现方式,索引可以分为 2 种:聚集索引和非聚集索引。
我们也把非聚集索引称为二级索引或者辅助索引。聚集索引可以按照主键来排序存储数据,这样在查找行的时候非常有效。举个例子,如果是一本汉语字典,我们想要查找“数”这个字,直接在书中找汉语拼音的位置即可,也就是拼音“shu”。这样找到了索引的位置,在它后面就是我们想要找的数据行。
非聚集索引又是什么呢?在数据库系统会有单独的存储空间存放非聚集索引,这些索引项是按照顺序存储的,但索引项指向的内容是随机存储的。也就是说系统会进行两次查找,第一次先找到索引,第二次找到索引对应的位置取出数据行。非聚集索引不会把索引指向的内容像聚集索引一样直接放到索引的后面,而是维护单独的索引表(只维护索引,不维护索引指向的数据),为数据检索提供方便。我们还以汉语字典为例,如果想要查找“数”字,那么按照部首查找的方式,先找到“数”字的偏旁部首,然后这个目录会告诉我们“数”字存放到第多少页,我们再去指定的页码找这个字。

聚集索引指表中数据行按索引的排序方式进行存储,对查找行很有效。只有当表包含聚集索引时,表内的数据行才会按找索引列的值在磁盘上进行物理排序和存储。每一个表只能有一个聚集索引,因为数据行本身只能按一个顺序存储。

聚集索引与非聚集索引的原理不同,在使用上也有一些区别:
1.聚集索引的叶子节点存储的就是我们的数据记录,非聚集索引的叶子节点存储的是数据位置。非聚集索引不会影响数据表的物理存储顺序。
2.一个表只能有一个聚集索引,因为只能有一种排序存储的方式,但可以有多个非聚集索引,也就是多个索引目录提供数据检索。
3.使用聚集索引的时候,数据的查询效率高,但如果对数据进行插入,删除,更新等操作,效率会比非聚集索引低。

1.对 WHERE 子句的字段建立索引,可以大幅提升查询效率。
2.采用聚集索引进行数据查询,比使用非聚集索引的查询效率略高。如果查询次数比较多,还是尽量使用主键索引进行数据查询。
除了业务逻辑和物理实现方式,索引还可以按照字段个数进行划分,分成单一索引和联合索引。
索引列为一列时为单一索引;多个列组合在一起创建的索引叫做联合索引。

最左匹配原则

这里需要说明的是联合索引存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。比如刚才举例的 (x, y, z),如果查询条件是 WHERE x=1 AND y=2 AND z=3,就可以匹配上联合索引;如果查询条件是 WHERE y=2,就无法匹配上联合索引。

你能看到当我们使用了联合索引 (user_id, user_name) 的时候,在 WHERE 子句中对联合索引中的字段 user_id 和 user_name 进行条件查询,或者只对 user_id 进行查询,效率基本上是一样的。当我们对 user_name 进行条件查询时,效率就会降低很多,这是因为根据联合索引的最左原则,user_id 在 user_name 的左侧,如果没有使用 user_id,而是直接使用 user_name 进行条件查询,联合索引就会失效。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容

  • 索引 数据库中的查询操作非常普遍,索引就是提升查找速度的一种手段 索引的类型 从数据结构角度分 1.B+索引:传统...
    一凡呀阅读 2,862评论 0 8
  • SQL SERVER提供了多种索引。如果以存储结构结构来区分,有聚集索引和非聚集索引;如果以数据的唯一性来区分,则...
    不知名的蛋挞阅读 6,027评论 0 5
  • 前言 索引,一种强大的存在;不管是什么行业,数据都是根基,终将落盘固化,提供各方检索查询,之前整理了一篇[《深入浅...
    码农戏码阅读 1,504评论 1 43
  • B 树的结构如下图所示: B 树作为平衡的多路搜索树,它的每一个节点最多可以包括 M 个子节点,M 称为 B 树的...
    alloevil阅读 256评论 0 0
  • “一定要跟「越来越美」的人做朋友,因为,美貌的背后 ,藏着一个人的自律、坚持、克制、高要求!” 这段时间总会想,是...
    板娘gogogo阅读 109评论 0 0