排序算法 | 时间复杂度 | 是否基于比较 |
---|---|---|
冒泡、插入、选择 | O(n2) | 是 |
快排、归并 | O(nlogn) | 是 |
桶、计数、基数 | O(n) | 否 |
如何分析一个“排序算法”?
- 排序算法的执行效率
- 最好情况、最坏情况、平均情况时间复杂度
第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。 - 时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反映的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。 - 比较次数和交换(或移动)次数
基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
排序算法的内存消耗
算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。排序算法的稳定性
如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。