Elasticsearch大文件检索性能提升20倍实践

转载请务必加上原作者:铭毅天下,原博客地址:http://blog.csdn.net/laoyang360

1、大文件是多大?

ES建立索引完成全文检索的前提是将待检索的信息导入Elaticsearch。

项目中,有时候需要将一些扫描件、PDF文档、Word、Excel、PPT等文档内容导入Elasticsearch。

比如:将《深入理解Elasticsearch》这边书导入ES,而这边书的全文内容被识别后的大小可能为3MB——5MB以上的字节。

存入ES后是一个content字段,对这个content执行全文检索&高亮显示,就存在检索效率低的问题,会耗时30S以上的时间。

这点,作为习惯了搜索引擎极速体验的用户,是不能忍的。

本文,详细记录了大文件的全文检索性能问题排查及提升实践方式。

2、问题描述

从检索症状来看:

1)翻页到1000+页(每页10条数据)以上,响应时间会比较长。

2)当遇到某些文件的时候(事后分析得知是大文件),响应时间尤其长,超过30S以上返回高亮结果。

3、问题排查与定位

步骤1: 限定返回记录条数。不提供直接访问末页的入口。

baidu,360,搜狗等搜索引擎都不提供访问末页的请求方式。都是基于如下的请求方式: 

通过点击上一下、下一页逐页访问。 


这个从用户的角度也很好理解,搜索引擎返回的前面都是相关度最高的,也是用户最关心的信息。

Elasticsearch的默认支持的数据条数是10000条,可以通过post请求修改。

最终,本步骤将支持ES最大返回值10000条数据,每页10条,也就是共显示1000页数据。

步骤2,from size机制问题 ,大于设定页就会慢

【from + size机制】:当Elasticsearch响应请求时,它必须确定docs的顺序,排列响应结果。如果请求的页数较少(假设每页10个docs), Elasticsearch不会有什么问题,但是如果页数较大时,比如请求第100页,Elasticsearch不得不取出第1页到第100页的所有docs,再去除第1页到第99页的docs,得到第100页的docs。

【scroll机制】:相对于from和size的分页来说,使用scroll可以模拟一个传统数据的游标,记录当前读取的文档信息位置。这个分页的用法,不是为了实时查询数据,而是为了一次性查询大量的数据(甚至是全部的数据)。

因为这个scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任何新索引进来的数据,都不会在这个快照中查询到。但是它相对于from和size,不是查询所有数据然后剔除不要的部分,而是记录一个读取的位置,保证下一次快速继续读取。

from+size方式以及scroll方式优缺点对比:

1)对于from+size方式:当结果足够大的时候,会大大加大内存和CPU的消耗。但,该方式使用非常方便。

2)对于scroll方式: 当结果足够大的时候, scroll 性能更佳。但是不灵活和 scroll_id 难管理问题存在。

【from网络】个人测试:当 结果足够大的时候 产生 scroll_id 性能也不低。如果只是一页页按照顺序,scroll是极好的,但是如果是无规则的翻页,那也是性能消耗极大的。

经过两种机制对比,加之步骤1,限定了分页数,最大1000页。并且用户支持主页翻页的方式,暂定还是采用from+size方式。

如果后面步骤有问题,再考虑换成scorll机制。

步骤3, 查看ES打印日志。

当出现卡顿、卡死等性能低、用户体验差问题时,查看ES的日志。 

分析日志如下: 


原因分析:卡顿、卡死都是堆内存设置不足导致。 

根据之间总结的高性能配置建议,果断加堆内存,由16GB增加到最大值31GB。 

堆内存使用比率可以通过:cerebro 工具检测性能。

步骤4:类似逆向解析dsl,排查查询慢在哪?

1) 打印出DSL,可以通过接口: searchSourceBuilder.toString()。

2) 新增profile参数,查看到底哪里慢了。 

profile API的目的是:将ES高层的ES请求拉平展开,直观的让你看到请求做了什么,每个细分点花了多少时间。 

给你改善性能提供相关支撑工作。 

使用举例如下:

GET/_search{"profile":true,"query": {"match": {"message":"message number"}  }}

1

2

3

4

5

6

7

3) 换了全文接口api ,query_string改成match query满足要求且速度有提升。

4)删除某些查询条件,在基础数据不变的条件下,查看查询速度是否快了(返回时间短了)。

验证发现,当不返回content字段(_source控制)时,速度会变快。 

当取消高亮字段处理,速度会更快。0.5秒之内返回结果。

至此,初步断定和高亮处理有关系。

步骤5:高亮问题排查及优化

通过论坛中网友的建议来看,都推荐对于大文件高亮使用: fast-vector-highlighter。

查询官网文档得知: 

Elasticsearch高亮分为三种方式:

方式1:传统plain高亮方式。

官网明确支持,该方式匹配慢,如果出现性能问题,请考虑其他高亮方式。

方式2: postings 高亮方式。

支持postings高亮方式,需要在mapping下添加如下信息:

"type":"text","index_options":"offsets"

1

2

添加完毕后,posting高亮方式将取代传统的高亮方式。

posting高亮方式的特点: 

1)速度快,不需要对高亮的文档再分析。文档越大,获得越高 性能 。 

2)比fvh高亮方式需要的磁盘空间少。 

3)将text文件分割成语句并对其高亮处理。对于自然语言发挥作用明显,但对于html则不然。 

4)将文档视为整个语料库,并 使用BM25算法 为该语料库中的文档打分。 

使用举例:

PUT /example{"mappings": {"doc": {"properties": {"comment": {"type":"text","index_options":"offsets"}      }    }  }}

1

2

3

4

5

6

7

8

9

10

11

12

13

方式3: fast-vector-highlighter 简称fvh高亮方式。

如果在mapping中的text类型字段下添加了如下信息:

"type":"text","term_vector":"with_positions_offsets"

1

2

fvh高亮方式将取代传统的plain高亮方式。

fvh高亮方式的特点如下: 

1)当文件>1MB(大文件)时候,尤其适合fvh高亮方式。 

2)自定义为 boundary_scanner的扫描方式。 

3) 设定了 term_vector to with_positions_offsets会增加索引的大小。 

4)能联合多字段匹配返回一个结果,详见matched_fields。 

5)对于不同的匹配类型分配不同的权重,如:pharse匹配比term匹配高。 

举例:

PUT /example{"mappings": {"doc": {"properties": {"comment": {"type":"text","term_vector":"with_positions_offsets"}      }    }  }}

1

2

3

4

5

6

7

8

9

10

11

12

13

最终选型:fvh高亮方式。首先:新建了索引,按照fvh的方式对content字段新设置了mapping;其次通过如下方式进行索引数据同步:

POST /_reindex{"source": {"index":"test_index"},"dest": {"index":"test_index_new"}}

1

2

3

4

5

6

7

8

9

实践结果表明,同样的大文件,原本检索>40S,现在2S之内返回结果。 

没有改一行代码,只修改了mapping,效率提升了近20倍。

步骤5 小结

清醒认知,一切bug都是纸老虎。 

多年开发经验让我深深认知到:

1,敢于暴露问题是开发者责任的体现。

这里包括所有技术问题,尤其是在测试人员、用户之前发现的问题。

2,出了bug,定位bug、根查bug是关键。

少瞎bb,少踢皮球。那些是市井“小市民”的专利,我们要敬而远之,也不要成为那样的人。 

“出淤泥而不染”是程序员恪守的宝贵品格。

3,项目负责人要稳定军心。

你TM乱了,军心就焕然了。 

不要板着脸,没有程序员亏欠你的,就事说事,对事不对人。

4,不同阶段说不同阶段的事,不马后炮。

到了上线阶段,说选型不合理、架构不合理,打谁的脸? 

平时务必及时关注项目动态,提前关注技术难点和风险点,协调架构师等技术专家,和大家一起克服。 

一切马后炮都是管理无能的体现!

5,拆解细化问题,并逐条列举排查思路是王道!

6,行胜于言!去做就是了。

解决问题的方法肯定比问题多。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 197,368评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,941评论 2 374
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,369评论 0 326
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,848评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,719评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,505评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,904评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,528评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,819评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,848评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,652评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,468评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,912评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,095评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,389评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,906评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,120评论 2 339

推荐阅读更多精彩内容