拍立淘-以图搜图中的图像搜索算法

摘要:移动端的以图搜图是一代又一代的图像人,搜索人的梦想。从90年代开始,学术界,工业界做了很多的努力和尝 试。拍立淘-以图搜图,从14年正式立项开始,通过算法/工程/产品的不断打磨,以及兄弟部门的紧密合作,在业务指标的增长的同时,沉淀下来了业界领先的图搜算法。

一、为什么要做,为什么现在做

1.1 为什么做:

  以图搜图功能,特别是移动端的以图搜图,成为日益增长的流量入口和用户需求。有机构表明:未来5年,用户使用语音和图像进行意图表达的比例将超过50%。手机淘宝每个月的用户反馈中,有相当的比例都是用户对以图搜图的需求和渴望。

1.2 为什么现在:

1. 移动设备的普及:带有摄像头的移动设备的日益普及。

2. 深度学习时代:从2013开始,深度学习在图像、语音、NLP等领域的工业界取得了巨大成功。

3. 大规模的计算平台的普及:如ODPS,亚马逊云。

4. 电商:移动电商的发展,使得通过手机进行所拍即所买成为用户的自然诉求。同时活跃的用户留下的数据使得相关性等能不断提升。

二、算法框架

  拍立淘首次上线是在2014年手机淘宝,很小的入口,功能也比较少。经过了多个版本的迭代和探索,形成了比较稳定的算法框架。如下图:

  上面的框架,有5个算法模块,分别是类目预测,主体检测,图像特征提取,检索索引和排序。其中,与相关性有关的是类目预测,主体检测,特征和排序。而检索索引更多的与scalability相关。

2.1 类目预测

由于特征对于类目的区分能力有限,同时如果不分类目在全量中搜索性能无法满足。因此,我们通过类目预测来判断商品数据哪个类目。目前拍立淘有10多个大类,涵盖上万个叶子类目。

2.2 主体检测

因为商品的背景复杂,主体常常较小,所以为了减少大量背景干扰和多主体的影响,因此需要将搜索目标从图像中提取出来。下面两幅图反应了对于用户的query,进行主体检测和不进行主体检测的搜索结果差异。

2.3 图像特征

图像特征包括深度特征(CNN深度卷积神经网络)和局部特征。CNN从高层提取特征,突破语义鸿沟。局部特征关注图像的局部特征,可以作为CNN特征的辅助和补充。

2.4 检索索引

搜索的过程可以分成离线和在线。离线过程进行商品图像特征的提取,建立索引。而在线的过程,对query提取特征,到分布式的引擎里面去进行快速的查询。

2.5 排序

针对多种图像特征,和非图像的特征,根据不同的优化函数,我们会对结果进行重新的排序。

三、拍立淘业务

  经过长期的迭代和优化,拍立淘不仅能够为用户提供同款和高度相似的搜索结果,并且在覆盖的类目和索引的宝贝上也达到了相当可观的量级。

  目前拍立淘的算法可以支持几亿图片的实时检索索引,其中包括男女服装,包,鞋以及其他如美妆,家居,饰品等不同种类的商品。此外,拍立淘还提供了一键搜索的用户体验,用户只需进行拍照即可得到最终的结果而不需要额外的操作。

目前拍立淘产品有如下的展现形式:

1. 移动端:拍立淘在手淘上有两个入口,分别是搜索框右侧的拍照按钮,以及扫一扫页面中的拍立淘Tab。

2. PC端:PC淘宝的搜索框

3. 外部和网页插件:http://www.pailitao.com

  以下是各类目实拍图在拍立淘中的搜索结果:

最后的话

1. 感谢拍立淘-图像搜索算法团队的同学,上面的算法成果是全团队的成果。感谢拍立淘项目组的全部成员,项目的发展和业务得增长使得算法能不断有机会沉淀和突破。

2. 拍立淘-以图搜图一路走来,部分解决了用户的拍照搜索需求,但是距离充分满足用户的需求还有一定的距离。项目组正在不断优化,从算法/工程/产品的角度去提高。

来源:云栖团队博客

原文:https://yq.aliyun.com/articles/3225#

转载文章,向原作者致敬!如有侵权或不周之处,敬请劳烦联系若飞(微信:1321113940)马上删除,谢谢!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容

  • 这些年计算机视觉识别和搜索这个领域非常热闹,后期出现了很多的创业公司,大公司也在这方面也花了很多力气在做。做视觉搜...
    方弟阅读 6,489评论 6 24
  • 前言 现在大火的人工智能更多时候是以别的名字进入公众视野的,主要是:语音识别,自然语言处理,计算机视觉,推荐系统等...
    Thanatos_defy阅读 2,489评论 0 2
  • 2018飞天技术汇,阿里巴巴机器智能技术实验室的刘磊带来题为全域精准图像搜索介绍的演讲,主要从四个方面进行了阐述,...
    许此一生阅读 247评论 0 0
  • 这是园中秋天 最后一朵 紫色的 天鹅绒般的牵牛花 我来 路过 收获 采摘了你的种子 等待明年再相约 可有谁还记得 ...
    水仙书生阅读 276评论 0 4
  • 光自行走 美自苦寒 走出至暗与凉薄 凝结冰蓝与血红 三石一线 共赴百年 一瞬之间
    小雯博阅读 121评论 0 2