Kaggle-共享单车项目分析

项目链接:Bike Sharing Demand | Kaggle

思路:1.认识数据

           2.特征工程

           3.建模并预测

首先,是一个关于自行车租赁预测的题目,Kaggle提供的训练数据是一个月前19点的使用情况,需要预测20天之后的使用情况,数据从Kaggle中下载。

数据共有12列,12个属性的意义如下:


属性的含义

读入训练数据



导入库和读入数据
训练数据总览

12列数据,并且数据没有缺失值。


测试数据总览

测试数据一共有9列,没有缺失值。

为了方便后面做特征工程,将训练数据和测试数据拼接起来。

数据中给出的datetime是例如2011-01-01 00:00:00这样的格式的,为了分析数据,需要将时间分割出月、日、几时


代码


按月份来看用量


按小时用量

根据小时用量可以将时段分为5个:0~7,7~10,10~15,15~20,20~24


各月自行车用量


按星期和小时查看骑行情况

按季节查看骑行情况


按季节的用量情况

每个季节每天的使用情况


每个季节每天的使用情况


工作日与骑行情况

天气与骑行情况


天气与骑行量

随着天气恶劣,自行车用量也在逐渐减少,天气是一个很好的特征。


温度与用量

确实40度的使用情况,41度那么热,可是用量却非常大,可能数据有些异常

各特征相关系数



各特征相关系数

由上图看出,注册用户和非注册用户的自行车使用量相差挺多的,非注册用户的相关系数是0

.69,而注册用户的相关系数为0.97


注册用户用量


非注册用户

剔除离群点


这是一个回归问题,如果目标值服从正态分布比较好,原数据不符合正态分布,需要进行处理

原数据


处理后

虽然不是标准的正态分布,但比原来的数据看上去好一些。



结果

代码地址:GitHub - missbai119/Code






©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容