R 学习笔记(2) -- 矩阵和数组

矩阵和数组是向量的两种特例

矩阵在 R 中是按列(column)存储的,但是通过设置 matrix 的参数 byrow 为 TRUE 可以将矩阵元素按照行排列,矩阵本身仍是按列存储的。

> y <- matrix(c(1,2,3,4,5,6),nrow=2)
> y
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
> y <- matrix(c(1,2,3,4,5,6),nrow=2,byrow=T)
> y
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6

可以对一个矩阵的子矩阵索引赋值:

> y
     [,1] [,2]
[1,]    1    4
[2,]    2    5
[3,]    3    6
> y[c(1,3),]
     [,1] [,2]
[1,]    1    4
[2,]    3    6
> y[c(1,3),] <- matrix(c(1,1,8,12),nrow=2)
> y
     [,1] [,2]
[1,]    1    8
[2,]    2    5
[3,]    1   12

对向量的负索引可以排除元素(类似取反),对矩阵同样有效:

> y
     [,1] [,2]
[1,]    1    4
[2,]    2    5
[3,]    3    6
> y[-2,]
     [,1] [,2]
[1,]    1    4
[2,]    3    6

矩阵也可以用类似向量筛选的方法进行筛选:

> x
     [,1] [,2]
[1,]    1    2
[2,]    2    3
[3,]    3    4
> x[x[,2]>=3,]
     [,1] [,2]
[1,]    2    3
[2,]    3    4

apply() 函数

apply() 函数的一般形式为:

apply(m, dimcode, f, fargs)

m 为矩阵
dimcode 为维度编号,1 代表对每一行应用 f 函数,2 代表对每一列应用 f 函数。
f 为函数
fargs 为函数的可选参数集。
使用 apply() 函数可以让程序更加紧凑易读,同时避免循环语句可能产生的 bug。


增加或删除矩阵的行和列

严格来说,矩阵的长度和维度是固定的,不能删除或增加行和列,但可以通过为矩阵重新赋值达到相同的效果。
函数 rbind() 按行组合,cbind() 按列组合,可以为矩阵增加行和列:

> z
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    1    0
[3,]    3    0    1
[4,]    4    0    0
> one
[1] 1 1 1 1
> two
[1] 2 2 2
> cbind(one, z)
     one      
[1,]   1 1 1 1
[2,]   1 2 1 0
[3,]   1 3 0 1
[4,]   1 4 0 0
> rbind(two,z)
    [,1] [,2] [,3]
two    2    2    2
       1    1    1
       2    1    0
       3    0    1
       4    0    0

使用 rbind 和 cbind 会生成新的矩阵,如果在循环中频繁生成新矩阵,是会很耗时的,最好一开始定义好一个大矩阵,每次循环时逐行或逐列进行赋值,以避免每次循环时进行耗时的矩阵内存分配。


向量与矩阵的差异

矩阵比向量多了两个属性,行数和列数:

> z <- matrix(1:8,nrow=4)
> z
     [,1] [,2]
[1,]    1    5
[2,]    2    6
[3,]    3    7
[4,]    4    8
> length(z)
[1] 8
> typeof(z)
[1] "integer"
> class(z)
[1] "matrix"
> attributes(z)
$dim
[1] 4 2
> dim(z)
[1] 4 2
> nrow(z)
[1] 4
> ncol(z)
[1] 2
> nrow
function (x) 
dim(x)[1L]
<bytecode: 0x2335e18>
<environment: namespace:base>

避免意外降维

对一个矩阵取子集,比如取某一行,结果会变成向量:

> z
     [,1] [,2]
[1,]    1    5
[2,]    2    6
[3,]    3    7
[4,]    4    8
> r <- z[2,]
> r
[1] 2 6
> class(r)
[1] "integer"
> attributes(r)
NULL
> attributes(z)
$dim
[1] 4 2
> str(r)
 int [1:2] 2 6
> str(z)
 int [1:4, 1:2] 1 2 3 4 5 6 7 8

r 变成了向量,在某些矩阵运算是可能产生错误,为了避免意外降维可以使用 drop 参数:

> r <- z[2,, drop=FALSE]
> r
     [,1] [,2]
[1,]    2    6
> dim(r)
[1] 1 2

这时 r 是一个 1 x 2 的矩阵,而不是向量。
对原本就是向量的对象,可以用 as.matrix() 转化为矩阵:

> u
[1] 1 2 3
> v <- as.matrix(u)
> attributes(u)
NULL
> attributes(v)
$dim
[1] 3 1

矩阵的行和列命名问题

访问矩阵元素最直接的方法是通过行号和列号,但是也可以用行名和列名,在分析某些数据时很有用,colnames() 和 rownames() 函数。

> z
     [,1] [,2]
[1,]    1    3
[2,]    2    4
> colnames(z)
NULL
> colnames(z) <- c('a','b')
> z
     a b
[1,] 1 3
[2,] 2 4
> colnames(z)
[1] "a" "b"
> z[,'a']
[1] 1 2

高维数组

矩阵只有行和列两个维度,举个例子,学生成绩,有三个学生,考试分两部分,考试成绩每一行代表一个学生,第一个学生两部分考试得分分别是46和30:

> firsttest
     [,1] [,2]
[1,]   46   30
[2,]   21   25
[3,]   50   50

如果还有第二次考试,成绩如下:

> secondtest
     [,1] [,2]
[1,]   46   43
[2,]   41   35
[3,]   50   50

现在把两次考试的成绩合并到一个数据结构中,命名为 tests,这种数据结构就是数组。用 array() 函数创建这个数据结构:

> tests <- array(data=c(firsttest,secondtest), dim=c(3,2,2))
> tests
, , 1

     [,1] [,2]
[1,]   46   30
[2,]   21   25
[3,]   50   50

, , 2

     [,1] [,2]
[1,]   46   43
[2,]   41   35
[3,]   50   50

> attributes(tests)
$dim
[1] 3 2 2

dim=c(3,2,2) 是指这个数据有两层,每层有三行两列。
tests 中每一个元素都有三个下标,比矩阵多一个,三个下标顺序与 $dim 中三个元素相同。例如第 3 个学生在第 1 次考试的第 2 部分得分:

> tests[3,2,1]
[1] 50

两个矩阵可以合并为一个三维数组,两个或者多个三维数组可以合并成一个四维数组。


把理想运用到真实的事物上,便有了文明。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容