搜索:如何用A*搜索算法实现游戏中的寻路功能?

算法解析

  • 这是一个非常典型的搜索问题。
  • 人物的起点就是他当下所在的位置,终点就是鼠标点击的位置。
  • 我们需要在地图中,找一条从起点到终点的路径。
  • 这条路径要绕过地图中所有障碍物,并且看起来要是一种非常聪明的走法。所谓“聪明”,笼统地解释就是,走的路不能太绕。理论上讲,最短路径显然是最聪明的走法,是这个问题的最优解。

实际上,像出行路线规划、游戏寻路,这些真实软件开发中的问题,一般情况下都不需要非得求最优解(也就是最短路径)。
在权衡路线规划质量和执行效率的情况下,我们只需要寻求一个次优解就足够了。
如何快速找出一条接近于最短路线的次优路线呢?
A* 算法:A* 算法是对 Dijkstra 算法的优化和改造。最优出行路线规划问题中,如果图非常大,Dijkstra 最短路径算法的执行耗时会很多
Dijkstra 算法有点儿类似 BFS 算法,它每次找到跟起点最近的顶点,往外扩展。这种往外扩展的思路,其实有些盲目。

可以避免“跑偏”吗?
当遍历到某个顶点时,从起点到这个顶点的路径长度是确定的,记作 g(i)(i 表示顶点编号)

  • 虽然从这个顶点到终点的路径长度是未知的,但可以用其他估计值来代替。
  • 可以通过这个顶点跟终点之间的直线距离(欧几里得距离),近似估算这个顶点跟终点的路径长度(注意:路径长度跟直线距离是两个概念)
  • 把这个距离记作 h(i)(i 表示这个顶点的编号),专业的叫法是启发函数(heuristic function)。
  • 因为欧几里得距离的计算公式,会涉及比较耗时的开根号计算,所以一般通过另外一个更加简单的距离计算公式,那就是曼哈顿距离(Manhattan distance)。
  • 曼哈顿距离是两点之间横纵坐标的距离之和。计算的过程只涉及加减法、符号位反转,所以比欧几里得距离更加高效。

原来只是单纯地通过顶点与起点之间的路径长度 g(i),来判断谁先出队列,现在有了顶点到终点的路径长度估计值,通过两者之和 f(i)=g(i)+h(i),来判断哪个顶点该最先出队列。
综合两部分,就能有效避免“跑偏”。f(i) 的专业叫法是估价函数(evaluation function)

A* 算法就是对 Dijkstra 算法的简单改造
在 A* 算法的代码实现中,顶点 Vertex 类的定义,跟 Dijkstra 算法中的定义,稍微有点儿区别,多了 x,y 坐标,以及刚刚提到的 f(i) 值。图 Graph 类的定义跟 Dijkstra 算法中的定义一样。

A* 算法的代码主要有 3 点区别:

  • 优先级队列构建的方式不同,
    A* 算法是根据 f 值( f(i)=g(i)+h(i))来构建优先级队列,
    Dijkstra 算法是根据 dist 值(g(i))来构建优先级队列;

  • A* 算法在更新顶点 dist 值的时候,会同步更新 f 值;

  • 循环结束的条件也不一样。Dijkstra 算法是在终点出队列的时候才结束,A* 算法是一旦遍历到终点就结束。

A* 这是为什么不能找到最短路线呢?
要找出起点 s 到终点 t 的最短路径,最简单的方法是,通过回溯穷举所有从 s 到达 t 的不同路径,然后对比找出最短的那个。但回溯算法的执行效率非常低,是指数级的。

Dijkstra 算法在此基础之上,利用动态规划的思想,对回溯搜索进行了剪枝,只保留起点到某个顶点的最短路径,继续往外扩展搜索。动态规划相较于回溯搜索,只是换了一个实现思路,但它实际上也考察到了所有从起点到终点的路线,所以才能得到最优解。

  • A* 算法之所以不能像 Dijkstra 算法那样,找到最短路径,主要原因是两者的 while 循环结束条件不一样
  • Dijkstra 算法是在终点出队列的时候才结束,A* 算法是一旦遍历到终点就结束
  • 对于 Dijkstra 算法,当终点出队列时,终点的 dist 值是优先级队列中所有顶点的最小值,即便再运行下去,终点的 dist 值也不会再被更新了。
  • 对于 A* 算法,一旦遍历到终点,我们就结束 while 循环,这个时候,终点的 dist 值未必是最小值。
  • A* 算法利用贪心算法的思路,每次都找 f 值最小的顶点出队列,一旦搜索到终点就不在继续考察其他顶点和路线了。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353