最小二乘法

我们以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢? 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...
对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:
(1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。 (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。 (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。
  最常用的是普通最小二乘法( Ordinary Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)- 即采用平方损失函数。
 样本回归模型:

其中ei
为样本(Xi,
Yi
)的误差
平方损失函数:

则通过Q最小确定这条直线,即确定
,以
为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:

根据数学知识我们知道,函数的极值点为偏导为0的点。
解得:

这就是最小二乘法的解法,就是求得平方损失函数的极值点。

三. C++实现代码


1 /* 2 最小二乘法C++实现 3 参数1为输入文件 4 输入 : x 5 输出: 预测的y 6 / 7 #include<iostream> 8 #include<fstream> 9 #include<vector>10 using namespace std;11 12 class LeastSquare{13 double a, b;14 public:15 LeastSquare(const vector<double>& x, const vector<double>& y)16 {17 double t1=0, t2=0, t3=0, t4=0;18 for(int i=0; i<x.size(); ++i)19 {20 t1 += x[i]x[i];21 t2 += x[i];22 t3 += x[i]y[i];23 t4 += y[i];24 }25 a = (t3x.size() - t2t4) / (t1x.size() - t2t2); // 求得β1 26 b = (t1t4 - t2t3) / (t1x.size() - t2t2); // 求得β227 }28 29 double getY(const double x) const30 {31 return ax + b;32 }33 34 void print() const35 {36 cout<<"y = "<<a<<"x + "<<b<<"\n";37 }38 39 };40 41 int main(int argc, char *argv[])42 {43 if(argc != 2)44 {45 cout<<"Usage: DataFile.txt"<<endl;46 return -1;47 }48 else49 {50 vector<double> x;51 ifstream in(argv[1]);52 for(double d; in>>d; )53 x.push_back(d);54 int sz = x.size();55 vector<double> y(x.begin()+sz/2, x.end());56 x.resize(sz/2);57 LeastSquare ls(x, y);58 ls.print();59 60 cout<<"Input x:\n";61 double x0;62 while(cin>>x0)63 {64 cout<<"y = "<<ls.getY(x0)<<endl;65 cout<<"Input x:\n";66 }67 }68 }
复制代码

四. 最小二乘法与梯度下降法
最小二乘法跟梯度下降法都是通过求导来求损失函数的最小值,那它们有什么区别呢。
相同
  1.本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent variables算出出一个一般性的估值函数。然后对给定新数据的dependent variables进行估算。  2.目标相同:都是在已知数据的框架内,使得估算值与实际值的总平方差尽量更小(事实上未必一定要使用平方),估算值与实际值的总平方差的公式为:

\Delta =\frac{1}{2} \sum_{i=1}^{m}{(f_{\beta }(\bar{x_{i}} )-y_{i})^{2} }
\Delta =\frac{1}{2} \sum_{i=1}^{m}{(f_{\beta }(\bar{x_{i}} )-y_{i})^{2} }

其中
\bar{x_{i} }
\bar{x_{i} }
为第i组数据的independent variable,
y_{i}
y_{i}
为第i组数据的dependent variable,
\beta
\beta
为系数向量。
不同  1.实现方法和结果不同:最小二乘法是直接对
\Delta
\Delta
求导找出全局最小,是非迭代法。而梯度下降法是一种迭代法,先给定一个
\beta
\beta
,然后向
\Delta
\Delta
下降最快的方向调整
\beta
\beta
,在若干次迭代之后找到局部最小。梯度下降法的缺点是到最小点的时候收敛速度变慢,并且对初始点的选择极为敏感,其改进大多是在这两方面下功夫。

参考: http://blog.csdn.net/qll125596718/article/details/8248249

原文网址:http://www.cnblogs.com/iamccme/archive/2013/05/15/3080737.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容