推荐阅读:变异检测到底应该用什么软件?

原文见:Validating generalized incremental joint variant calling with GATK HaplotypeCaller, FreeBayes, Platypus and samtools

说到变异检测,可能大家第一个想到的工具就是GATK HaplotypeCaller。它很出名,所以用的人多,为什么用的人多?是因为大家听说他很准,但是到底有多准呢?其实大家都不会去深究,不过没关系,有人会帮我们去做评测。

在2014年就有一篇博客,用NA12878/NA12891/NA12892 trio数据集对GATK HaplotypeCaller, FreeBayes, Platypus 和samtools 这五个软件做了一个比较,下面是比较结果。

首先作者这几个工具同时对所有样本进行变异检测,因为它们都号称可以利用群体结构相互验证,提高结果的正确性。

群体变异检测

先不要被这个条形图的明显反差误差,以为Platypus非常差,其实它们都在一个数量级上。在同一个数量级上,GATK的HaplotypeCaller在精度和准确上都的确比其他软件好。也可以发现samtools其实在找indels更加的粗犷,找到了更多本来不存在的indels,但是在snp上的表现其实是一致的。

下一步是比较群体、混池和单个样本检测。这里说明一下混池,所谓的混池就是把多个样本混在一起测序,丢失了个体信息。

为什么要研究单个样本的变异效果呢?主要是为了提高效率,便于并行。

混池检测表现
单样本检测

这上面两个图其实和之前那个图类似,但是的确在精度上和准度上有些降低。并且samtools的假阳性依旧非常感人。

最后说说我的看法:

这篇博客主要是看检测后的数据集效果,而没有看变异过滤后效果。GATK的优势在于,能够利用机器学习的方法根据已有变异数据库进一步提高结果的准确度。但是对于植物而言,所能做的就是硬指标过滤。

因此,如果做人类,最推荐的工具是GATK,因为表现的确很好。而且人类还会不断增加样本,需要使用GVCFS文件解决N+1的问题

如果是植物,我目前就用freebayes了,效率高,表现也不错。同时强烈推荐阅读这篇文献"Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations"。

植物多倍体找SNP策略1

植物多倍体找SNP策略2

还有这三篇文章(可惜已经被原作者删了):

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容