pytorch scatter的用法

官方给的用法:

scatter(dim, index, src)
self[index[i][j][k]][j][k] = src[i][j][k]  # if dim == 0
self[i][index[i][j][k]][k] = src[i][j][k]  # if dim == 1
self[i][j][index[i][j][k]] = src[i][j][k]  # if dim == 2

一个例子

import torch
input = torch.randn(2, 4)
print(input)
output = torch.zeros(2, 5)
index = torch.tensor([[3, 1, 2, 0], [1, 2, 0, 3]])
output = output.scatter(1, index, input)
print(output)

输出:

tensor([[ 0.0461,  0.4024, -1.0115,  0.2167],
        [-0.6123,  0.5036,  0.2310,  0.6931]])
tensor([[ 0.2167,  0.4024, -1.0115,  0.0461,  0.0000],
        [ 0.2310, -0.6123,  0.5036,  0.6931,  0.0000]])

scatter(scatter_)是将input tensor按照index赋值给output tensor来达到更新output的效果的。
我们从index下手,
index[0][0]=3,由于dim=1,那么我们取input[0][0]=0.0461, 赋值给output[0][index[0][0]]=output[0][3]
index[0][3]=0, input[0][3]=0.2167,赋值给output[0][inde[0][3]]=output[0][0]
index[1][2]=0, input[1][2]=0.2310, 赋值给output[1][index[1][2]]=output[1][0]
index[1][3]=3, input[1][3]=0.6931, 赋值给output[1][index[1][3]]=output[1][3]

也就是index的下标和input的下标是一致的,取出来的这个值赋值给谁呢,这个是index对应的值以及dim来确定的,如果dim=1, 那么更新的是output[i][index[i][j]]=input[i][j],官方文档给的是三维的情况,dim是多少,那么index的值就放在第几维。
scatter一个很重要的应用就是生成one-hot矩阵
假设总共有5类,现在一个batch有3个样本,分别对应的标签为1,2,0。那么生成的one-hot矩阵应该是这样的:

index=torch.tensor([[1], [2], [0]])
y=torch.zeros(3, 5)
y=y.scatter(1, index, 1)
print(y)

输出:

tensor([[0., 1., 0., 0., 0.],
        [0., 0., 1., 0., 0.],
        [1., 0., 0., 0., 0.]])
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容

  • 介绍 相比TensorFlow的静态图开发,Pytorch的动态图特性使得开发起来更加人性化,选择Pytorch的...
    dawsonenjoy阅读 24,925评论 2 18
  • stack使用stack是为了保留两个信息: 序列(先后)和 张量矩阵信息。比如在循环神经网络中,网络的输出数据...
    lzjngu阅读 362评论 0 0
  • 1.pytorch中的索引 index_select(x, dim, indices)dim代表维度,indice...
    yumiii_阅读 5,392评论 0 0
  • scatter_(input, dim, index, src)将src中数据根据index中的索引按照dim的方...
    cjhfhb阅读 5,847评论 0 0
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,535评论 28 53