linear regression analysis-chapter3-multiple linear regression

线性系统分析,看书和coursera课上的笔记

  1. multiple regression model: a regression model that involves more than one regressor variable(x).
  2. regression coefficients, β0...βj
  3. 多项式的都可以被化为多元linear
  4. the effect produced by changing one variable depends on the level of the other variable
  5. in the real world problenms, regression coefficients and error variance are not known, and must be estimated from sample data. the fitted regression equation or model is typically used in prediction.
  6. all result should be valid for the case where the regressors are random variables. When the Xs are random variables, it is only necessary that the observations on each regressor be independent and the distribution not depend on the regression coefficients(βs) or on σ.
  7. when testing hypotheses or constructing CIs(Confidence interval), we should assume that the conditional distribution(条件分布) of y given x be normal with mean β0+β1x1+β2x2+...+βkxk and variance σ^2
    大概意思就是做hypothesis test的时候和计算置信区间的时候,要assume,这个y=方程是符合关于mean 和variance的正态分布的
    (若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2),当μ = 0,σ = 1时的正态分布是标准正态分布,前面说过E(ε)=0, 所以这里应该是标准正态分布)

coursera jh regression models

useful

  1. explanatory variable---- independent variable (predictor, x)
    response variable----dependent variable (predicted, y).
    y=β0+β1x, where β0 is the intercept, and β1 is the slope.

  2. Define correlation as the linear association between two numerical variables. 线性模型和x y变量的关系是否紧密,R表示
    Note that a relationship that is nonlinear is simply called an association

  3. Correlation properties:

  4. the magnitude (absolute value) of the correlation coefficient measures the strength of the linear association between two numerical variables

  5. the sign of the correlation coefficient indicates the direction of association

  6. the correlation coefficient is always between -1 and 1, -1 indicating perfect negative linear association, +1 indicating perfect positive linear association, and 0 indicating no linear relationship

  7. the correlation coefficient is unitless
    since the correlation coefficient is unitless, it is not affected by changes in the center or scale of either variable (such as unit conversions)

  8. the correlation of X with Y is the same as of Y with X
    the correlation coefficient is sensitive to outliers

  9. Define residual (e) as the difference between the observed (y) and predicted (y^) values of the response variable.

  10. Define the least squares line as the line that minimizes the sum of the squared residuals, and list conditions necessary for fitting such line:

  11. Note that the least squares line always passes through the average of the response and explanatory variables (x¯,y¯).

  12. Use the above property to calculate the estimate for the intercept (b0) as
    b0=y¯−b1x¯,

where b1 is the slope, y¯ is the average of the response variable, and x¯ is the average of explanatory variable.

  1. Predict the value of the response variable for a given value of the explanatory variable, x⋆, by plugging in x⋆ in the linear model:
    y^=b0+b1x⋆

β0+β1x1+β2x2+...+βkxk
σ
ε
Σ
α
λ
δ

一点补充:t 检验是根据两样本均数及两样本的标准差,计算如果两总体均数相同的话,抽样得到两样本均数差达如此之大或更大的可能性多大,就是p 值,p值<0.05,表示两者之间的距离显著。

cheatSheet
when testing hypotheses or constructing CIs(Confidence interval), we should assume that the conditional distribution(条件分布) of y given x be normal with mean β0+β1x1+β2x2+...+βkxk
and variance σ^2

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容