对称加密算法和分组密码的模式

  • 对称加密算法,即加密和解密使用一样的密钥的加解密算法。
  • 分组密码(block cipher),是每次只能处理特定长度的一块(block)数据的一类加解密算法。
  • 目前常见的对称加密算法DES、3DES、AES都是属于分组密码。

DES

  • DES,全称Data Encryption Standard,是上一代标准对称加密算法,现已不推荐使用
  • 密钥:DES是一种将64bit的明文加密成64bit的密文的对称密码算法,它的密钥长度是64bit(每隔7bit会设置一个用于错误检查的bit,因此实际使用密钥长度56bit)。
  • 分组:DES是以64bit的明文作为一个单位来进行加密的,这64bit的单位称为分组。一般来说,以分组为单位进行处理的密码算法称为分组密码(block cipher),DES就是分组密码中的一种。DES每次只能加密64比特的数据,如果要加密的明文比较长,就需要对DES加密进行迭代。
DES加密
DES解密

3DES

  • 3DES,即triple-DES,简单地说就是3次DES加解密的组合。现已不推荐使用。
  • 加密:cipthertext = E(k3, D(k2, E(k1, plaintext)))
  • 解密:plaintext = D(k1, E(k2, D(k3, ciphertext)))
  • 特点:如果三个密钥都一样,拿刚好和DES一样。

注:E表示Encrypt,D表示Decrypt。

3DES加密
3DES解密

AES

  • AES, Advanced Encryption Standard,是现行的对称加密标准。目前(2017)如果使用对称加密,应该使用AES。当然,只能说当前AES算法是安全的,不能保证AES永远都是安全的。
  • 分组:128bit。
  • 密钥:128bit、192bit、256bit。

分组密码的模式

分组密码简介

  • 分组密码(block cipher),是每次只能处理特定长度的一块数据的一类密码算法,这里的“一块”就称为分组(block)。一个分组的比特数就称为分组长度(block length)。
  • 流密码(stream cipher),是对数据流进行连续处理的一类密码算法。
  • DES、3DES、AES等大多数对称密码算法都属于分组密码。

ECB模式

  • 全称Electronic CodeBook mode,电子密码本模式。
  • 分组方式:将明文分组加密之后的结果直接称为密文分组。
  • 优点:
    • 一个分组损坏不影响其它分组。
    • 可以并行加解密。
  • 缺点:
    • 相同的明文分组会转换为相同的密文分组。
    • 无需破译密码就能操纵明文(每个分组独立且前后文无关,直接增加或删除一个分组不影响其它分组解密过程的正确性)。
ECB加密
ECB解密

CBC模式

  • 全称Cipher Block Chaining mode,密码分组链接模式。
  • 分组方式:将明文分组与前一个密文分组进行XOR运算,然后再进行加密。每个分组的加解密都依赖于前一个分组。而第一个分组没有前一个分组,因此需要一个初始化向量(initialization vector)。
  • 优点:
    • 加密结果与前文相关,有利于提高加密结果的随机性。
    • 可并行解密。
  • 缺点
    • 无法并行加密。
    • 一个分组损坏,如果密文长度不变,则两个分组受影响。
    • 一个分组损坏,如果密文长度改变,则后面所有分组受影响。
CBC加密
CBC解密

CFB模式

  • 全称Cipher FeedBack mode,密文反馈模式。
  • 分组方式:前一个密文分组会被送回到密码算法的输入端(具体见下图)。
  • 在CBC和EBC模式中,明文分组都是通过密码算法进行加密的。而在CFB模式中,明文分组并没有通过加密算法直接进行加密,明文分组和密文分组之间只有一个XOR。
  • CFB模式是通过将“明文分组”与“密码算法的输出”进行XOR运行生成“密文分组”。CFB模式中由密码算法生成的比特序列称为密钥流(key stream)。密码算法相当于密钥流的伪随机数生成器,而初始化向量相当于伪随机数生成器的种子。(CFB模式有点类似一次性密码本。)
  • 优点:
    • 支持并行解密。
    • 不需要填充(padding)。
  • 缺点:
    • 不能抵御重放攻击(replay attack)。
    • 不支持并行加密。
CFB加密
CFB解密

OFB模式

  • Output FeedBack mode 输出反馈模式
  • 密码算法的输出会反馈到密码算法的输入中(具体见下图)。
  • OFB模式中,XOR所需的比特序列(密钥流)可以事先通过密码算法生成,和明文分组无关。只需要提前准备好所需的密钥流,然后进行XOR运算就可以了。
OFB加密
OFB解密

分组模式小结

推荐使用CBC模式。

填充

  • 为什么要填充?
    ECB和CBC模式要求明文数据必须填充至长度为分组长度的整数倍。

  • 填充的两个问题。

    • 填充多少字节?
    • 填充什么内容?
  • 填充多少字节?
    需要填充的字节数为:paddingSize = blockSize - textLength % blockSize

  • 填充什么内容?(这里列举的三种方式本质上是一致的)

    • ANSI X.923:填充序列的最后一个字节填paddingSize,其它填0。
    • ISO 10126:填充序列的最后一个字节填paddingSize, 其它填随机数。
    • PKCS7:填充序列的每个字节都填paddingSize

示例

这里用golang写一个AES加密的例子。

由于加密出来的数据很可能有很多不可见字符,因此这里会将加密后的结果进行一次Base64Encode。

这里采用CBC模式+PKCS7填充方式。

package main

import (
    "bytes"
    "crypto/cipher"
    "crypto/aes"
    "encoding/base64"
    "fmt"
)

func PKCS7Padding(ciphertext []byte, blockSize int) []byte {
    padding := blockSize - len(ciphertext) % blockSize
    padtext := bytes.Repeat([]byte{byte(padding)}, padding)
    return append(ciphertext, padtext...)
}

func PKCS7UnPadding(origData []byte) []byte {
    length := len(origData)
    unpadding := int(origData[length-1])
    return origData[:(length - unpadding)]
}

func AesEncrypt(origData, key []byte) ([]byte, error) {
    block, err := aes.NewCipher(key)
    if err != nil {
        return nil, err
    }
    blockSize := block.BlockSize()
    origData = PKCS7Padding(origData, blockSize)
    blockMode := cipher.NewCBCEncrypter(block, key[:blockSize])
    crypted := make([]byte, len(origData))
    blockMode.CryptBlocks(crypted, origData)
    return crypted, nil
}

func AesDecrypt(crypted, key []byte) ([]byte, error) {
    block, err := aes.NewCipher(key)
    if err != nil {
        return nil, err
    }
    blockSize := block.BlockSize()
    blockMode := cipher.NewCBCDecrypter(block, key[:blockSize])
    origData := make([]byte, len(crypted))
    blockMode.CryptBlocks(origData, crypted)
    origData = PKCS7UnPadding(origData)
    return origData, nil
}

func main() {
    key := []byte("0123456789abcdef")
    result, err := AesEncrypt([]byte("hello world"), key)
    if err != nil {
        panic(err)
    }
    fmt.Println(base64.StdEncoding.EncodeToString(result))
    origData, err := AesDecrypt(result, key)
    if err != nil {
        panic(err)
    }
    fmt.Println(string(origData))
}

参考文档

  • 《图解密码学》
  • 维基百科
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容

  • 这篇文章主要讲述在Mobile BI(移动商务智能)开发过程中,在网络通信、数据存储、登录验证这几个方面涉及的加密...
    雨_树阅读 2,331评论 0 6
  • 本文主要介绍移动端的加解密算法的分类、其优缺点特性及应用,帮助读者由浅入深地了解和选择加解密算法。文中会包含算法的...
    苹果粉阅读 11,459评论 5 29
  • 概述 什么是模式 第三章介绍的对称密码算法DES、AES都属于分组密码,分组密码的特点是分组的长度是固定的。但是由...
    JMasche阅读 3,032评论 0 4
  • 前言 本文章是对《图解密码技术》一书第一部分的一个总结。 密码分类 密码算法需要密钥,根据密钥的使用方法,可以将密...
    发仔很忙阅读 1,397评论 1 2
  • 昨天和男朋友谈心,我说感觉自己进入了职业倦怠期,时常好像一眼就能看到自己职业生涯的尽头,几次有想拔腿走人的冲动。可...
    NJ晨曦阅读 384评论 0 0