T检验是比较两组定量数据均值之间是否存在显著差异的方法。如果是定类数据之间的差异性,比较均值显然不合理,而用数字出现的频数或比例进行比较,就可以不考虑数值本身的信息,直接比较出类别变量之间的关系情况。这类分析方法就被称为卡方检验。
本文将从概念、方法分类、每个方法的使用场景及案例分析对卡方检验进行介绍。
01. 概念
卡方检验是一种用途广泛的分析定类数据差异性的方法,用于比较定类与定类数据的关系情况,以及分析实际数据的比例与预期比例是否一致。
02. 方法分类
与T检验一样,卡方检验也可细分为:分析卡方优度检验、交叉表卡方、配对卡方。具体分析方法如下:
03. 卡方优度检验
卡方优度检验,是对一列数据进行统计检验,分析单个分类变量实际观测的比例与期望比例是否一致。
案例:当前收集了100份数据用于研究,其中有48名男性,52位女性。在收集数据前预期男女比例应该是4:6 (40%为男性,60%为女性),现在想分析实际收集到的数据比例与预期的比例有没有显著的差异。
操作步骤:
(1)卡方拟合优度检验支持两种数据格式:整理后的加权数据或原始数据。处理好数据后,上传数据到SPSSAU,开始分析。
(2)选择【实验/医学研究】→【卡方优度检验】。
如使用原始数据,直接将“性别”项放入分析框即可。
如使用加权格式数据,需要把将“性别”项放入分析框,同时在加权项中放入“个数(权重)”
(3)设置期望值:
不勾选【期望值设置】,系统会默认各比例相等,本例中期望比例为4:6,所以需要手动设置。
分析结果:
上表格显示,男女的实际频数分别是48和52,预期频数分别是40和60;经过卡方拟合优度检验显示,实际比例和期望比例并没有呈现出显著性差异(X2=2.667,p=0.102>0.05),意味着实际情况与期望情况基本一致,无明显的差异性。
04.交叉表卡方
卡方优度检验是对一个分类变量的检验,在实际研究中,研究两组分类变量的关系更加常见,例如想要了解阅读习惯与学历是否有关,此时可使用交叉卡方。
案例:分析不同性别学生对购买理财产品的意愿是否有差异。
操作步骤:
可以选择按行统计百分数或者按列统计百分数,区别在于括号内百分数一个按列计算,一个按行计算,案例中选择“百分数(按列)”
结果分析:
从上表可以看出,不同性别样本对于是否购买理财产品的意愿不会表现出显著性差异,说明性别和购买理财产品之间没有联系。反之,呈现出显著性;则说明性别对购买意愿会有影响,具体差异需要通过对比百分比得到。
其他指标分析:
如果检验得出两变量之间确实存在联系(结果有显著性差异),想要进一步了解两者的相关程度,需要结合效应量指标具体分析。SPSSAU提供5种指标;分别是:Phi系数、列联系数、、校正列联系、Cramer V系数、Lambda指标。
*X或Y中有定序数据,则建议使用Lambda指标
*交叉类型表示交叉表横向格子数×纵向格子数
05. 配对卡方
除了以上两种分析场景外,有时还需要分析配对分类数据的差异性。此类数据最常见于实验研究,用不同的方法检测同一批人,看两个方法的效果是否有差异。此时可使用配对卡方检验。
案例:当前有两种办法可以诊断癌症,A方法简易且成本低廉但是准确率稍低;B方法结果可靠但操作麻烦且成本较高。共收集53名待诊患者,并且分别进行两种方法诊断,现希望通过研究判断两种诊断方法是否有差异。此数据为配对数据,而且为定类数据(诊断结果为定类数据),因而需要使用配对卡方检验。
操作步骤:
结果分析:
配对卡方有两种检验统计量,分别是McNemar检验和Bowker检验。二者的区别如下:
本案例中两种方法均只有阳性和阴性两种结果时,因此选择McNemar检验,SPSSAU会自动判断,匹配合适的方法。
06. 其他说明
事实上,计算卡方值的方法不止一种,常见包括Pearson卡方,yates校正卡方,fisher卡方,具体要结合期望频数、R*C交叉类型等选择采不同的检验方法。SPSSAU可自动选择最优方法,因此不需单独考虑使用哪种方法。
更多干货内容可到SPSSAU官网查看。