BP神经网络

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。


计算过程

BP神经网络的计算过程由正向计算过程和反向计算过程组成。正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每~层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各神经元的权值,使得误差信号最小。


BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。

②容易陷入局部极小值。

③网络层数、神经元个数的选择没有相应的理论指导。

④网络推广能力有限。


BP网络主要用于以下四个方面。

1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数。

2)模式识别:用一个待定的输出向量将它与输入向量联系起来。

3)分类:把输入向量所定义的合适方式进行分类。

4)数据压缩:减少输出向量维数以便于传输或存储。


激活函数

必须处处可导(一般都使用S型函数)

激活函数例如sigmoid:一个根据不同因素、以及各个因素的重要性程度而做决策的模型。

使用S型激活函数时,BP网络输入与输出关系

输入:

输出:

输出的导数:


BP网络的标准学习算法

学习的过程:

神经网络在外界输入样本的刺激下不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。

学习的本质:

对各连接权值的动态调整

学习规则:

权值调整规则,即在学习过程中网络各神经元的连接权值变化所依据的一定的调整规则

BP网络的标准学习算法-算法思想

学习的类型:  有导师学习

核心思想将输出误差以某种形式通过隐层向输入层逐层反传(即,将误差分摊给各层的所有单元——各层单元的误差信号,以此来修正各单元权值)

个人理解 :就如同之前的梯度下降函数每次更新Θ值一样,每次来一个样本,就更新Θ值,使得代价函数变得越来越小。这个类似,先给他们的权值赋个随机初值,然后计算到最后一层(输出层),若输出结果与实际值有误差(这个正常情况下是肯定有的),那么就进行误差的反向传播算法,来优化各层的Θ值(权重值)

学习的过程: 信号的正向传播——》误差的反向传播

BP网络的标准学习算法-学习过程

正向传播

输入样本-----输入层------各隐层--------输出层

判断是否转入反向传播阶段

若输入层的实际输出(h(x))与期望的输出(y)不符。

误差反传

误差以某种形式在各层表示-----修正各层单元的权值(w或者Θ)

最终结果

网络输出的误差减少到了可以接受的程度(或 进行到预先设定的学习次数为止)







http://www.cnblogs.com/charlotte77/p/5629865.html

http://blog.csdn.net/shenxiaoming77/article/details/50392709

https://baike.baidu.com/item/BP%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C/4581827?fr=aladdin

http://blog.csdn.net/acdreamers/article/details/44657439

http://blog.csdn.net/u013007900/article/details/50118945

[整理] BP神经网络讲解——最好的版本 (超赞)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,817评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,329评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,354评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,498评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,600评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,829评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,979评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,722评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,189评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,519评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,654评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,940评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,762评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,993评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,382评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,543评论 2 349

推荐阅读更多精彩内容