pymongo使用

Tutorial

开始之前,安装PyMongo和Mongo。

import pymongo
client= pymongo.MongoClient(MONGO_URL)
db = client[MONGO_DB]
collection = db[MONGO_TABLE]

插入操作

>>> posts = db.posts
>>> posts.insert(post) # 将post数据插入posts数据表

查询一条数据:

>>> posts.find_one()

批量插入

>>> new_posts = [{"author": "Mike",
...        "text": "Another post!",
...        "tags": ["bulk", "insert"],
...        "date": datetime.datetime(2009, 11, 12, 11, 14)},
...       {"author": "Eliot",
...        "title": "MongoDB is fun",
...        "text": "and pretty easy too!",
...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]
>>> result = posts.insert_many(new_posts)
>>> result.inserted_ids
[ObjectId('...'), ObjectId('...')]

查找多条数据:

>>> for post in posts.find():
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

约束查找条件:
比如查询所有作者是 “Mike”的文章:

>>> for post in posts.find({"author": "Mike"}):
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

多条件查询:
比如,数据有有title 和intro两个属性,查询两字段都不存在的数据:

posts.find({ '$and': [ { 'title': {'$exist': 'false'} }, { 'intro': {'$exist': 'false'} } ] })

获取集合的数据条数:

>>> posts.count()

或者说满足某种查找条件的数据条数:

>>> posts.find({"author": "Mike"}).count()

范围查找,比如说时间范围:

>>> d = datetime.datetime(2009, 11, 12, 12)
>>> for post in posts.find({"date": {"$lt": d}}).sort("author"):
...  print post
...
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$lt是小于的意思。

如何建立索引呢?比如说下面这个查找:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BasicCursor'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

建立索引:

>>> from pymongo import ASCENDING, DESCENDING
>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
u'date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BtreeCursor date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

查询结果排序

>>> posts.find().sort("UserName") #默认为升序
>>> posts.sort("UserName",pymongo.ASCENDING)  #升序
>>> posts.sort("UserName",pymongo.DESCENDING) #降序

聚集查询结果多列排序

>>> posts.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])
修改记录
>>>  posts.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

删除记录


>>>  posts.delete_one({"UserName":"keyword"})  # 删除满足条件的一条数据
>>>  posts.delete_many({"UserName":"keyword"}) #删除满足条件的数据

筛选出不存在某字段的数据,并执行修改操作:

#筛选出所有未发布的文章,并执行发表操作
    for i in posts.find({"published": { "$exists" : False }}):

        print(i['link'])#打印出文章链接
      
        posts.update({'link':i['link']},{'$set':{'published':'yes'}}) # 对匹配该链接的数据,新增字段published,并设为yes

aggregate

to_update=book_list.aggregate([
    {'$match': {'$or': [{'update': {'$lte': '2017-06-18'}}, {'update':{"$exists" : False}}]}},
    #用$match筛选符合条件的数据:这里是update字段小于等于 '2017-06-18'或不存在
    {'$project':{'link':1}}
    # $project:修改输出结构,这里表示只输出符合条件数据的link字段。
    #输出结构为:
    # [{'link': 'http://www.xxxxx', '_id': ObjectId('58d469f5')},
    #  {'link': 'http://www.ddddd', '_id': ObjectId('b8cf09ca')},
    #                  ... 
    # ]
])

字段更名

我们发现在上面的例子里,book_list有一个名为update的字段,由于update是数据库的关键字,在具体应用时,会报关键字冲突的错误,我们需要将其更名,方法和之前的例子类似:

#筛选出所有update字段存在的数据
for i in book_list.find({"update": { "$exists" : True }}):

    print(i['link'])#打印出文章链接
    # 对匹配该链接的数据,将update字段更名为update_time字段
    book_list.update({'link':i['link']},{'$rename':{'update':'update_time'}})


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,743评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,296评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,285评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,485评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,581评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,821评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,960评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,719评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,186评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,516评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,650评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,936评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,757评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,991评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,370评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,527评论 2 349

推荐阅读更多精彩内容