TensorFlow全新的数据读取方式:Dataset API入门教程

姓名:白国乐

学号:17021210898

专业:信号与信息处理

转载自:http://blog.csdn.net/qq_40027052/article/details/78528898,有删节

【嵌牛导读】本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。

【嵌牛鼻子】Dataset API

【嵌牛提问】什么是Dataset API?

【嵌牛正文】此前,在TensorFlow中读取数据一般有两种方法:

使用placeholder读内存中的数据

使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解TensorFlow数据读取机制

相Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。

本文就来为大家详细地介绍一下Dataset API的使用方法(包括在非Eager模式和Eager模式下两种情况)。

Dataset API的导入

在TensorFlow 1.3中,Dataset API是放在contrib包中的:

tf.contrib.data.Dataset

而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员:

tf.data.Dataset

下面的示例代码将以TensorFlow 1.4版本为例,如果使用TensorFlow 1.3的话,需要进行简单的修改(即加上contrib)。

基本概念:Dataset与Iterator

让我们从基础的类来了解Dataset API。参考Google官方给出的Dataset API中的类图:

在初学时,我们只需要关注两个最重要的基础类:Dataset和Iterator。

Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。

先以最简单的,Dataset的每一个元素是一个数字为例:

importtensorflowastfimportnumpyasnpdataset= tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

这样,我们就创建了一个dataset,这个dataset中含有5个元素,分别是1.0, 2.0, 3.0, 4.0, 5.0。

如何将这个dataset中的元素取出呢?方法是从Dataset中示例化一个Iterator,然后对Iterator进行迭代。

在非Eager模式下,读取上述dataset中元素的方法为:

iterator= dataset.make_one_shot_iterator()one_element =iterator.get_next()withtf.Session()assess:foriinrange(5):        print(sess.run(one_element))

对应的输出结果应该就是从1.0到5.0。语句iterator =

dataset.make_one_shot_iterator()从dataset中实例化了一个Iterator,这个Iterator是一个“one

shot iterator”,即只能从头到尾读取一次。one_element =

iterator.get_next()表示从iterator里取出一个元素。由于这是非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。

如果一个dataset中元素被读取完了,再尝试sess.run(one_element)的话,就会抛出tf.errors.OutOfRangeError异常,这个行为与使用队列方式读取数据的行为是一致的。在实际程序中,可以在外界捕捉这个异常以判断数据是否读取完,请参考下面的代码:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0,2.0,3.0,4.0,5.0]))iterator = dataset.make_one_shot_iterator()one_element = iterator.get_next()with tf.Session() as sess:    try:        while True:            print(sess.run(one_element))    except tf.errors.OutOfRangeError:        print("end!")

在Eager模式中,创建Iterator的方式有所不同。是通过tfe.Iterator(dataset)的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run():

import tensorflow.contrib.eageras tfetfe.enable_eager_execution()dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0,2.0,3.0,4.0,5.0]))for one_elementintfe.Iterator(dataset):    print(one_element)

之前我们用tf.data.Dataset.from_tensor_slices创建了一个最简单的Dataset:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0,2.0,3.0,4.0,5.0]))

其实,tf.data.Dataset.from_tensor_slices的功能不止如此,它的真正作用是切分传入Tensor的第一个维度,生成相应的dataset。

例如:

dataset = tf.data.Dataset.from_tensor_slices(np.random.uniform(size=(5,2)))

传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。

在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个Python中的元组,或是Python中的词典。例如,在图像识别问题中,一个元素可以是{“image”:

image_tensor, “label”: label_tensor}的形式,这样处理起来更方便。

tf.data.Dataset.from_tensor_slices同样支持创建这种dataset,例如我们可以让每一个元素是一个词典:

dataset = tf.data.Dataset.from_tensor_slices(    {"a": np.array([1.0,2.0,3.0,4.0,5.0]),"b": np.random.uniform(size=(5,2))    })

这时函数会分别切分”a”中的数值以及”b”中的数值,最终dataset中的一个元素就是类似于{“a”: 1.0, “b”: [0.9, 0.1]}的形式。

利用tf.data.Dataset.from_tensor_slices创建每个元素是一个tuple的dataset也是可以的:

dataset = tf.data.Dataset.from_tensor_slices(  (np.array([1.0,2.0,3.0,4.0,5.0]), np.random.uniform(size=(5,2))))

Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。

常用的Transformation有:

map

batch

shuffle

repeat

下面就分别进行介绍。

(1)map

map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0,2.0,3.0,4.0,5.0]))dataset = dataset.map(lambdax:x+1)# 2.0, 3.0, 4.0, 5.0, 6.0

(2)batch

batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:

dataset=dataset.batch(32)


(3)shuffle

shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:

dataset=dataset.shuffle(buffer_size=10000)


(4)repeat

repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

dataset=dataset.repeat(5)


如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:

dataset=dataset.repeat()

讲到这里,我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。

对应的程序为(从官方示例程序修改而来):

# 函数的功能时将filename对应的图片文件读进来,并缩放到统一的大小def _parse_function(filename, label):  image_string = tf.read_file(filename)  image_decoded = tf.image.decode_image(image_string)  image_resized = tf.image.resize_images(image_decoded, [28,28])returnimage_resized, label# 图片文件的列表filenames = tf.constant(["/var/data/image1.jpg","/var/data/image2.jpg",...])# label[i]就是图片filenames[i]的labellabels = tf.constant([0,37,...])# 此时dataset中的一个元素是(filename, label)dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))# 此时dataset中的一个元素是(image_resized, label)dataset = dataset.map(_parse_function)# 此时dataset中的一个元素是(image_resized_batch, label_batch)dataset = dataset.shuffle(buffersize=1000).batch(32).repeat(10)

在这个过程中,dataset经历三次转变:

运行dataset = tf.data.Dataset.from_tensor_slices((filenames,

labels))后,dataset的一个元素是(filename, label)。filename是图片的文件名,label是图片对应的标签。

之后通过map,将filename对应的图片读入,并缩放为28x28的大小。此时dataset中的一个元素是(image_resized, label)

最后,dataset.shuffle(buffersize=1000).batch(32).repeat(10)的功能是:在每个epoch内将图片打乱组成大小为32的batch,并重复10次。最终,dataset中的一个元素是(image_resized_batch,

label_batch),image_resized_batch的形状为(32, 28, 28,

3),而label_batch的形状为(32, ),接下来我们就可以用这两个Tensor来建立模型了。

Dataset的其它创建方法

除了tf.data.Dataset.from_tensor_slices外,目前Dataset API还提供了另外三种创建Dataset的方式:

tf.data.TextLineDataset():这个函数的输入是一个文件的列表,输出是一个dataset。dataset中的每一个元素就对应了文件中的一行。可以使用这个函数来读入CSV文件。

tf.data.FixedLengthRecordDataset():这个函数的输入是一个文件的列表和一个record_bytes,之后dataset的每一个元素就是文件中固定字节数record_bytes的内容。通常用来读取以二进制形式保存的文件,如CIFAR10数据集就是这种形式。

tf.data.TFRecordDataset():顾名思义,这个函数是用来读TFRecord文件的,dataset中的每一个元素就是一个TFExample。

它们的详细使用方法可以参阅文档:Module: tf.data

更多类型的Iterator

在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_one_shot_iterator()来创建一个one

shot iterator。除了这种one shot iterator外,还有三个更复杂的Iterator,即:

initializable iterator

reinitializable iterator

feedable iterator

initializable iterator必须要在使用前通过sess.run()来初始化。使用initializable

iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator。一个简单的initializable

iterator使用示例:

limit = tf.placeholder(dtype=tf.int32, shape=[])dataset = tf.data.Dataset.from_tensor_slices(tf.range(start=0, limit=limit))iterator = dataset.make_initializable_iterator()next_element = iterator.get_next()with tf.Session() as sess:    sess.run(iterator.initializer, feed_dict={limit:10})    for iinrange(10):      value = sess.run(next_element)      assert i == value

此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。

initializable iterator还有一个功能:读入较大的数组。

在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable

iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):

# 从硬盘中读入两个Numpy数组with np.load("/var/data/training_data.npy") as data:  features = data["features"]  labels = data["labels"]features_placeholder = tf.placeholder(features.dtype, features.shape)labels_placeholder = tf.placeholder(labels.dtype, labels.shape)dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))iterator = dataset.make_initializable_iterator()sess.run(iterator.initializer, feed_dict={features_placeholder: features,                                          labels_placeholder: labels})

reinitializable iterator和feedable iterator相比initializable iterator更复杂,也更加少用,如果想要了解它们的功能,可以参阅官方介绍,这里就不再赘述了。

总结

本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。

在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。

在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容

  • TF API数学计算tf...... :math(1)刚开始先给一个运行实例。tf是基于图(Graph)的计算系统...
    MachineLP阅读 3,459评论 0 1
  • 简单线性回归 import tensorflow as tf import numpy # 创造数据 x_dat...
    CAICAI0阅读 3,544评论 0 49
  • 仅以此文纪念你骁勇忠诚的一生。 1 童年时候,家乡有“养狗守家招财”的说法,邻舍家家都养狗,唯独我家没有。我猜想可...
    小三元阅读 434评论 0 1
  • 从今天开始,记录一下。
    果子亲阅读 205评论 1 1
  • 根据软件说明或用户需求验证App的各个功能实现 ,采用如下方法实现并评估功能测试过程: 1)采用时间、地点、对象、...
    alston123阅读 394评论 0 0