分库分表后全局唯一ID的四种生成策略对比

分库分表之后,ID主键如何处理?

当业务量大的时候,数据库中数据量过大,就要进行分库分表了,那么分库分表之后,必然将面临一个问题,那就是ID怎么生成?因为要分成多个表之后,如果还是使用每个表的自增长ID,意味着每个表都是从1开始累加的,这样肯定是不对的。需要一个全局唯一的ID来支持。所以这也是你实际生产环境中必须考虑的一个问题。全局ID生成器,一般需要满足下列几个特性:

唯一性、高可用、递增性、安全性、高可用性

413f52c7a08ddc586135b60a2c1c3993.png

常用的主键ID生成策略有以下几种:

数据库自增ID

原理:

如果使用这种方式,那么这就意味着,你的系统里每次得到一个ID,都需要往一个库中的一个表中插入一条没有什么业务含义的数据,然后获取一个数据库自增的id.拿到这个ID之后,再往对应的分库分表里写。

c3a43d012cf90106d6d1a63eae8b8f62.png

这种方式的优缺点如下:

优点:非常简单,有序递增,方便分页和排序。

缺点:

a.分库分表之后,数据表的自增ID容易重复,无法直接使用(虽然可以设置步长,但是局限性明显);

b.性能吞吐量整个比较低。如果设计一个单独的数据库来实现分布式应用的数据唯一性,即使使用预先生成方案,也会因为事务问题,在高并发场景下容易出现单点的瓶颈问题。

使用场景:单数据库实例的表ID(包含主从同步场景);部分按天计数的流水号等

在分不分表场景、全局唯一性ID场景下不使用。

Redis生产全局ID

原理:

通过Redis的INCR/INCRBY自增原子操作命令,能保证生产的ID肯定是唯一的序列号,本质上实现方式与数据库一致的。

2ba2ef16c94fd5c1c78e127cf65642dc.png

使用Redis生产全局ID的优缺点:

优点:整体吞吐量比数据库要高。因为Redis的吞吐量性能高于数据库

缺点:Redis实例或者集群宕机后,找回最新的ID值比较麻烦。但是可以在生产唯一ID的算法上进行优化,避免这种情况。

使用场景:比较适合计算场景。比如用户访问量、订单流水号(日期+流水号)等。

凯哥推荐文章:Redis实战9-全局唯一ID

UUID、GUID生成ID

优缺点:

优点:性能非常高。在本地生成,没有网络消耗;

缺点:UUID太长了,占用空间大,作为主键性能太差了;

由于UUI不具有有序性,会导致B+树索引在写的时候有过多的随机写操作。

使用场景:如果你要随机生成一个什么文件名称、编号之类的,可以考虑使用UUID,但是如果是作为数据库的主键,不建议使用UUID的。

雪花算法(snowflake)

雪花算法来源于Twitter,使用Scala语言实现,雪花算法的特性是有序、唯一且要求性能高,低延迟(每台集群每秒至少生成10K条数据,并且响应时间在2MS内),要在分布式环境(多集群、跨机房)下使用。因此雪花算法得到的ID是分段组成的。

a.与指定日期时间差(时间差到毫秒级)的,41位数字,可以使用69年;

b.机器ID+集群ID,10位,最多支持1024台机器;

c.序列号,12位。每台机器每毫秒内最多生产4096个序列号.

雪花算法的核心思想是:

分布式ID固定是一个long类型的数字,一个long类型占用8个字节,也就是8*8=64个bit位。所以,雪花算法的格式如下图:

42e2b28690ba0bf1dabb5bdf96898e62.png

雪花算法分段,每段含义:

第一段:也就是最高1位是符号位。固定值,就是0,标识全部ID都是正整数。

第二段:接下来的41位,标识的是时间戳。单位是毫秒。41bits标识的数字对应的是2^41次方-1.也就是可以标识2的41次方-1个毫秒值。换算成年就是标识69年的时间;

第三段:再接下来的10位标识的是机器ID。如果有异地部署,多集群的也可以配置,需要在线下提前规划好各地机房,各个集群,实例ID的编号。其中包括5位的机器id和5位的集群id.最多可以部署2^10台机器。也就是1024台。

第四段:最后12位是序列号。用于记录同一毫秒内产生的不同ID.12个比特位可以代表的最大正整数是2^12-1=4096.也就是说,可以用这12个bits代表数字来区分同一毫秒内4096个不同的ID.

此算法的优缺点如下:

雪花算法的优缺点:

优点:毫秒数在高位,自增序列在低位,所以整个ID都呈现出递增趋势;

不依赖数据库等三方系统,以服务部署方式,稳定性更高,生成ID的性能也是非常高的;

可以根据自身业务特性来分配bit位,非常灵活。

缺点:

太依赖集群的时钟,如果机器时钟回拨了,可能会导致重复或者服务处于不可用。

结束语

大家好,我是凯哥Java(kaigejava),乐于分享技术文章,欢迎大家关注“凯哥Java”,及时了解更多。让我们一起学Java。也欢迎大家有事没事就来和凯哥聊聊~~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容