pyspark 的dataframe操作

1. 连接spark

from pyspark.sql import SparkSession

spark=SparkSession \
        .builder \
        .appName('my_first_app_name') \
        .getOrCreate()

2. 创建dataframe

2.1. 从变量创建

# 生成以逗号分隔的数据
stringCSVRDD = spark.sparkContext.parallelize([
    (123, "Katie", 19, "brown"),
    (234, "Michael", 22, "green"),
    (345, "Simone", 23, "blue")
])
# 指定模式, StructField(name,dataType,nullable)
# 其中:
#   name: 该字段的名字,
#   dataType:该字段的数据类型,
#   nullable: 指示该字段的值是否为空
from pyspark.sql.types import StructType, StructField, LongType, StringType  # 导入类型

schema = StructType([
    StructField("id", LongType(), True),
    StructField("name", StringType(), True),
    StructField("age", LongType(), True),
    StructField("eyeColor", StringType(), True)
])

# 对RDD应用该模式并且创建DataFrame
swimmers = spark.createDataFrame(stringCSVRDD,schema)

# 利用DataFrame创建一个临时视图
swimmers.registerTempTable("swimmers")

# 查看DataFrame的行数
swimmers.count()

2.2. 从变量创建

# 使用自动类型推断的方式创建dataframe

data = [(123, "Katie", 19, "brown"),
        (234, "Michael", 22, "green"),
        (345, "Simone", 23, "blue")]
df = spark.createDataFrame(data, schema=['id', 'name', 'age', 'eyccolor'])
df.show()
df.count()

2.3. 读取json

# 读取spark下面的示例数据

file = r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\people.json"
df = spark.read.json(file)
df.show()

2.4. 读取csv

# 先创建csv文件
import pandas as pd
import numpy as np
df=pd.DataFrame(np.random.rand(5,5),columns=['a','b','c','d','e']).\
    applymap(lambda x: int(x*10))
file=r"D:\hadoop_spark\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\random.csv"
df.to_csv(file,index=False)

# 再读取csv文件
monthlySales = spark.read.csv(file, header=True, inferSchema=True)
monthlySales.show()

2.5. 读取MySQL

# 此时需要将mysql-jar驱动放到spark-2.2.0-bin-hadoop2.7\jars下面
# 单机环境可行,集群环境不行
# 重新执行
df = spark.read.format('jdbc').options(
    url='jdbc:mysql://127.0.0.1',
    dbtable='mysql.db',
    user='root',
    password='123456' 
    ).load()
df.show()

# 也可以传入SQL语句

sql="(select * from mysql.db where db='wp230') t"
df = spark.read.format('jdbc').options(
    url='jdbc:mysql://127.0.0.1',
    dbtable=sql,
    user='root',
    password='123456' 
    ).load()
df.show()

2.6. 从pandas.dataframe创建

# 如果不指定schema则用pandas的列名
df = pd.DataFrame(np.random.random((4,4)))
spark_df = spark.createDataFrame (df,schema=['a','b','c','d'])  

2.7. 从列式存储的parquet读取

# 读取example下面的parquet文件
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\users.parquet"
df=spark.read.parquet(file)
df.show()

2.8. 从hive读取

# 如果已经配置spark连接hive的参数,可以直接读取hive数据
spark = SparkSession \
        .builder \
        .enableHiveSupport() \      
        .master("172.31.100.170:7077") \
        .appName("my_first_app_name") \
        .getOrCreate()

df=spark.sql("select * from hive_tb_name")
df.show()

3. 保存数据

3.1. 写到csv

# 创建dataframe
import numpy as np
df = pd.DataFrame(np.random.random((4, 4)),columns=['a', 'b', 'c', 'd'])
spark_df = spark.createDataFrame(df)

# 写到csv
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\test.csv"
spark_df.write.csv(path=file, header=True, sep=",", mode='overwrite')

3.2. 保存到parquet

# 创建dataframe
import numpy as np
df = pd.DataFrame(np.random.random((4, 4)),columns=['a', 'b', 'c', 'd'])
spark_df = spark.createDataFrame(df)

# 写到parquet
file=r"D:\apps\spark-2.2.0-bin-hadoop2.7\examples\src\main\resources\test.parquet"
spark_df.write.parquet(path=file,mode='overwrite')

3.3. 写到hive

# 打开动态分区
spark.sql("set hive.exec.dynamic.partition.mode = nonstrict")
spark.sql("set hive.exec.dynamic.partition=true")

# 使用普通的hive-sql写入分区表
spark.sql("""
    insert overwrite table ai.da_aipurchase_dailysale_hive 
    partition (saledate) 
    select productid, propertyid, processcenterid, saleplatform, sku, poa, salecount, saledate 
    from szy_aipurchase_tmp_szy_dailysale distribute by saledate
    """)

# 或者使用每次重建分区表的方式
jdbcDF.write.mode("overwrite").partitionBy("saledate").insertInto("ai.da_aipurchase_dailysale_hive")
jdbcDF.write.saveAsTable("ai.da_aipurchase_dailysale_hive", None, "append", partitionBy='saledate')

# 不写分区表,只是简单的导入到hive表
jdbcDF.write.saveAsTable("ai.da_aipurchase_dailysale_for_ema_predict", None, "overwrite", None)

3.4. 写到hdfs

# 数据写到hdfs,而且以csv格式保存
jdbcDF.write.mode("overwrite").options(header="true").csv("/home/ai/da/da_aipurchase_dailysale_for_ema_predict.csv")

3.5. 写到mysql

# 会自动对齐字段,也就是说,spark_df 的列不一定要全部包含MySQL的表的全部列才行

# overwrite 清空表再导入
spark_df.write.mode("overwrite").format("jdbc").options(
    url='jdbc:mysql://127.0.0.1',
    user='root',
    password='123456',
    dbtable="test.test",
    batchsize="1000",
).save()

# append 追加方式
spark_df.write.mode("append").format("jdbc").options(
    url='jdbc:mysql://127.0.0.1',
    user='root',
    password='123456',
    dbtable="test.test",
    batchsize="1000",
).save()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,743评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,296评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,285评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,485评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,581评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,821评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,960评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,719评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,186评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,516评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,650评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,936评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,757评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,991评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,370评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,527评论 2 349

推荐阅读更多精彩内容

  • 来源:https://blog.csdn.net/suzyu12345/article/details/79673...
    antyzhu阅读 1,173评论 0 1
  • 1. 连接本地spark 2. 创建DataFrame 2.1 从变量创建 2.2 使用自动类型推断的方式创建da...
    熊定坤阅读 10,582评论 1 5
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,448评论 0 13
  • pySpark DataFrames常用操作指南 前1, 2步是环境数据集操作,如果只想看常用操作请跳到3 1. ...
    AsdilFibrizo阅读 813评论 0 4
  • 久违的晴天,家长会。 家长大会开好到教室时,离放学已经没多少时间了。班主任说已经安排了三个家长分享经验。 放学铃声...
    飘雪儿5阅读 7,513评论 16 22