google云计算的三大核心技术

google云计算的三大核心技术

google云计算的三大核心技术:GFS,MapReduce,BigTable

GFS: 分布式文件系统。

适用于TB级超大文件存储。master节点是文件管理的大脑,负责存储和管理文件与物理块的映射,维护metafile,处理临时文件,调度chunk server等。chunk server是真正存储物理文件块。GFS定位于由廉价服务器构成的超大集群,假定单个服务器存储是不可靠地,易失的,因此GFS强调冗余和备份。每份文件块会同时存储于多个不同的chunk server。上层客户请求文件时,首先与master节点交互,获取相关信息,随后client将直接与相应的某个chunk server通信并获取文件。在开源产品中类似实现有HDFS。

MapReduce:并行计算的核心技术框架。

使得上层应用软件可以专注于业务逻辑实现,同时利用到分布式并行计算的好处。Map接受和输出属性-值对,使得各节点工作进程可以并行计算它们的属性-值,并输出中间结果;Reduce化简,输入Map处理的中间结果,进行合并运算,最终输出结果文件,返回给上层应用。一个典型案例:编写一个应用对图书馆过去50年的文献,统计最大词频。MapReduce可以做的是,自动分割输入文件集合(任务分解),自动在多节点上克隆运算进程(map进程组和reduce进程组),并分别指派任务,最终映射和化简都完毕后,将处理结果文件返回给原始客户应用 --- 对上层应用很好的屏蔽了并行计算。在开源实现中,对应有Hadoop。

BigTable:分布式的、稀疏的、多维的、易于扩展的、适用于海量数据的数据库。

它是非关系型数据库,尽管也沿用如表、行等传统概念。他的实质是key-value记录的集合。多维是说key有多个:行、列以及时间。稀疏是因为不同行的列可以完全不同。表、行可以自动分裂从而扩展。相同属性的列组成列族。相比而言,BigTable适合海量存储和非结构化数据(比如网络流量、多媒体、网页、日志等),操作大多数为读取和查询。而传统关系型数据库则易于实现复杂的结构化DML操作。典型案例是网页的存储:以反向URL为key,网页内容以及引用为列,同时网页更新的时间标记作为另一个键。开源实现类似的有HBase,HyperTable等。


公众号:it全能程序猿


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容