Side Window Filtering 论文解读和C++实现

Side Window Filtering

      刚开始看到这篇论文的时候,我就很感兴趣想去复现一把看看效果。这篇论文是今年 CVPR oral 且不是深度学习方向的,其核心贡献点就是:不管原来的滤波器保不保边,运用了side-window思想之后,都可以让它变成保边滤波!

    于是利用业余时间,参考作者开源的matlab代码,我用C++实现了一下Side-window 盒子滤波,其他滤波器有时间再试下,下面是github的链接,读者可以去跑下代码看看效果玩下,从实验结果上看我觉得算是复现了论文的效果:

Side-window Box Filter

      我们来看下复现论文的效果,对于一张普通图片,经典的盒子滤波和side-window 盒子滤波的效果对比:

      从滤波结果对比上可以看到,经典的盒子滤波随着对同一张图片反复应用盒子滤波的迭代次数的增加,视觉效果是越来越模糊,到了30次迭代的时候已经糊的没法看了,但是Side-window盒子滤波即使迭代了30次,对于边缘的保持还很好,和原图基本看不出大的区别,就是边缘细节有些丢失。

      然后对原图加上椒盐噪声,再对比下滤波效果:

      从滤波结果对比上可以看到,经典的盒子滤波到了10次迭代的时候,虽然椒盐噪声已经很好的消除了,但是图片也变得很模糊,边缘都细节都丢失了,但是Side-window盒子滤波却能很好的消除椒盐噪声的同时,对于边缘的保持还很好,基本上算是还原了原图。

        下面从我的理解上去简单解读下这篇论文的核心思想,还有我在复现过程中的一些实现细节介绍。

      目前的经典滤波算法基本都是,以某个像素点为中心,按照滤波半径,把这个包括像素点和其邻域加权线性组合得到输出,一般公式如下:

      Ω是以像素点 i 为中心的滤波窗口,w是滤波权值,q是原图像素值,I'是输出结果。但是这样以一个像素为中心去滤波会导致的问题是,如果一个像素点处在边缘位置(这里的边缘不是指图片的大小边界,而是指图像中物体的边缘)的话,以像素为中心去滤波会导致滤波结果的边缘部分变模糊。具体是为什么,论文中给出了分析过程。

      首先来看下,论文中的一张图:

      文中提到为了分析方便只讨论3种典型的边缘,分别是图中的 (a)阶梯状边缘、(b)斜坡状边缘和(c)屋顶状边缘。论文中也给出了这3三种边缘的形象展示:

      然后文中采用了泰勒展开去分析,首先假定,图像上(x, y)坐标点的像素值为g(x, y),对于图中展示的情况来看,函数 g(x, y)是连续但不可导的。对于(a)阶梯状边缘的 'a' (蓝色方框那个点)点来说,文中定义 'a-' 和 'a+' 来分别表示 'a' 点左极限 (x - ε, y),和右极限 (x + ε, y),且 ε > 0。 很明显从图中可以看出来 g(x - ε, y) ≠ g(x + ε, y) 且/或(文中的用词是"and (or)")g'(x - ε, y) ≠ g'(x + ε, y),导数也不等是由于边缘部分的跳跃。因此对于这两块区域的泰勒展开也是不一样的,首先来看下泰勒展开的一般公式:

      “泰勒公式是将一个在 x=x0 处具有n阶导数的函数 f(x) 利用关于 (x - x0) 的n次多项式来逼近函数的方法。”----百度百科

    根据文中的分析,这里设定 f(x) = g(x - 2ε, y),x0 = x - ε,则根据泰勒展开公式:

g(x - 2ε, y) ≈ f(x0) + f'(x0)(x - x0)

                  = g(x - ε, y) + g'(x - ε, y)(x - 2ε - (x - ε))

                  = g(x - ε, y) + g'(x - ε, y)(- ε)

同理,设 f(x) = g(x + 2ε, y),x0 = x + ε,则泰勒展开得:

g(x + 2ε, y) ≈ f(x0) + f'(x0)(x - x0)

                  = g(x + ε, y) + g'(x + ε, y)(x + 2ε - (x + ε))

                  = g(x + ε, y) + g'(x + ε, y)ε

所以从两边的泰勒展开式可以得出结论,对于 'a-' 区域的滤波估计肯定是来自区域 'a' 的左边,而对于 'a+' 估计是来自于 'a' 的右边,然后类比分析区域 'b','c' 和 'd' 都可以得到类似的结论。

      因此分析得到的结论是,如果一个像素点处于图像中的边缘位置,那么滤波的时候就应该把滤波器的边缘和该像素点对齐,而不是把滤波器的中心和该像素点对齐。受该发现的启发,文中提出了一个新的保边滤波策略,就是把每个滤波像素点都当成是潜在的边缘点,然后对于每个待滤波的像素点,生成几种不同的滤波子窗口,然后把这些滤波窗口的边缘或者角点位置和该像素点对齐,然后滤波得到结果,最后根据把这些子窗口的滤波之后的最佳重构结果作为最终的滤波结果。以上就是side window 滤波的思想。

        然后文中提出了8个方向的滤波窗口,分别是上、下,左、右、左上、右上、左下和右下,最后就得到了 side window filter 的核心算法流程:

      其实从核心算法逻辑来看,对原来滤波算法的改动其实不大,就是滤波的窗口位置和大小需要改动下,然后把8次的结果每个位置取重构误差最小的。然后论文中又详细分析了 box filter 和 side window box filter 对于上面提到的三种经典边缘的滤波之后的保留情况。文中给出分析的图表如下:

      总的来说结论就是 side window box filter 对于阶梯和斜坡状的边缘都能完整的保留,而对于屋顶状边缘虽然不能完整的保留边缘,但是也比经典的盒子滤波要好很多。

        在复现过程中,本来一开始是想对文中提到的8种side window去分别写对应的盒子滤波的,因为盒子滤波有个经典的优化思路,可以让运行时间不受滤波半径的影响,具体可以参考我之前写得一篇博客:

移动端arm cpu优化学习笔记----一步步优化盒子滤波

        后来仔细想了下,这8个side window其实也就是边界处理不同,核心运算逻辑都是一致的,最后就是抽象成一个函数,对于不同的side window传不同的边界参数,就不需要每个窗口写一个函数了,具体可以看看github上的代码。

        最后看看一组结果,看看在迭代10次的情况下,经典box filter 和 side window box filter的结果对比:

熊猫宝宝原图
滤波结果, box filter, iteration = 10  
滤波结果, side window box filter, iteration = 10  
熊猫宝宝原图+椒盐噪声  
去噪结果, box filter, iteration = 10  
去噪结果, side window box filter, iteration = 10  

相关资料:

AI鸡蛋:CVPR2019 Oral论文 #5176 Side Window Filtering介绍

AI鸡蛋:Sub-window Box Filter论文介绍


本文首发于:https://zhuanlan.zhihu.com/p/79254846

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容