IOS排序算法之冒泡排序、插入排序、选择排序、希尔排序

最近在学习算法,对此也做一个总结:

排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。

按照时间复杂度把它们分成了三类:

image.png

算法之间性能也有差异,从哪些方面分析呢?可以从以下三个方面分析比较

排序算法的执行效率

对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:

1.最好情况、最坏情况、平均情况时间复杂度

我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。

为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。

2. 时间复杂度的系数、常数 、低阶

我们知道,时间复杂度反应的是数据规模n很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

3. 比较次数和交换(或移动)次数

基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。冒泡排序、插入排序、选择排序,都是原地排序算法。

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

我通过一个例子来解释一下。比如我们有一-组数据2, 9, 3, 4, 8, 3,按照大小排序之后就是2,3,3,4,8,9。

这组数据里有两个3。经过某种排序算法排序之后,如果两个3的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法

你可能要问了,两个3哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?

很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一-组对象, 我们需要按照对象的某个key来排序。

比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性, -个是下单时间,另一个是订单金额。如果我们现在有10万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?

最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。

借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?

稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后, 所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

image.png

接下来我将一一讲解各种经典算法的核心思想

冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

image.png

可以看出,经过一次冒泡操作之后,6 这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行 6 次这样的冒泡操作就行了。

image.png

实际上,刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。我这里还有另外一个例子,这里面给 6 个元素排序,只需要 4次冒泡操作就可以了。

image.png

冒泡排序算法的原理比较容易理解,具体的代码我贴到下面,你可以结合着代码来看我前面讲的原理。

#pragma mark -
#pragma mark 冒泡排序
- (void)gly_bubbleSort:(NSString *)propertyName result:(NSComparisonResult)result
{
    if (self.count <= 1)
    {
        return;
    }
    
    for (NSInteger i = 0; i < self.count; i++)
    {
        //提前退出冒泡循环的标志位
        BOOL flag = NO;
        for (NSInteger j = 0; j < self.count - i - 1; j++)
        {
            NSNumber *numberOne = [self[j] valueForKey:propertyName];
            NSNumber *numberTwo = [self[j + 1] valueForKey:propertyName];
            if ([numberOne compare:numberTwo] == result)
            {
                flag = YES;
                [self exchangeObjectAtIndex:j withObjectAtIndex:j + 1];
            }
        }
        
        if (!flag)
        {
            break;
        }
    }
}

现在,结合刚才我分析排序算法的三个方面,我有三个问题要问你。

第一,冒泡排序是原地排序算法吗?

冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为0(1), 是一个原地排序算法。

第二,冒泡排序是稳定的排序算法吗?

在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

第三,冒泡排序的时间复杂度是多少?

最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是0(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行n次冒泡操作,所以最坏情况时间复杂度为O(n2)。

image.png

最好、最坏情况下的时间复杂度很容易分析,那平均情况下的时间复杂是多少呢?我们前面讲过, 平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。

对于包含n个数据的数组,这n个数据就有n!种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一一个要进行6次冒泡,而另一个只需要4次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。我这里还有一种思路,通过“有序度”“逆序度”这两个概念来进行分析。

有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:

1有序元素对: a[i] <= a[j],如果i < j。
image.png

同理,对于一个倒序排列的数组,比如6, 5, 4, 3, 2, 1,有序度是0;对于一一个完全有序的数组,比如1, 2, 3, 4, 5, 6,有序度就是n*(n- -1)/2,也就是15。我们把这种完全有序的数组的有序度叫作满有序度

逆序度的定义正好跟有序度相反(默认从小到大为有序),我想你应该已经想到了。关于逆序度,我就不举例子讲了。你可以对照我讲的有序度的例子自己看下。

逆序元素对:a[i] > a[j], 如果 i < j。

关于这三个概念,我们还可以得到一个公式:逆序度=满有序度-有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。

我还是拿前面举的那个冒泡排序的例子来说明。要排序的数组的初始状态是4, 5, 6, 3, 2, 1,其中,有序元素对有(4, 5)(4, 6)(5, 6), 所以有序度是3。n=6,所以排序完成之后终态的满有序度为n*(n-1)/2=15。

image.png

冒泡排序包含两个操作原子,比较交换。每交换一次,有序度就加1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n- -1)/2-初始有序度。此例中就是15- -3=12,要进行12次交换操作。

对于包含n个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是0,所以要进行n(n-1)/2次交换。最好情况下,初始状态的有序度是n(n-1)/2,就不需要进行交换。我们可以取个中间值n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。

换句话说,平均情况下,需要n*(n-1)/4次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是O(n2),所以平均情况下的时间复杂度就是O(n2)。

这个平均时间复杂度推导过程其实并不严格,但是很多时候很实用,毕竟概率论的定量分析太复杂,不太好用。等我们讲到快排的时候,我还会再次用这种“不严格”的方法来分析平均时间复杂度。

插入排序(Insertion Sort)

我们先来看一个问题。一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。

image.png

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一-直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

插入排序具体是如何借助.上面的思想来实现排序的呢?

首先,我们将数组中的数据分为两个区间,已排序区间未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一-直有序。重复这个过程,直到未排序区间中元
素为空,算法结束。

如图所示,要排序的数据是4, 5, 6, 1, 3, 2,其中左侧为已排序区间,右侧是未排序区间。

image.png

插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据a插入到已排序区间时,需要拿a与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一-位,这样才能腾出位置给元素a插入。

对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

为什么说移动次数就等于逆序度呢?我拿刚才的例子画了一个图表,你一看就明白了。满有序度是n*(n-1)/2=15,初始序列的有序度是5,所以逆序度是10。插入排序中,数据移动的个数总和也等于10=3+3+4。

image.png

插入排序的原理也很简单吧?我也将代码实现贴在这里,你可以结合着代码再看下

#pragma mark -
#pragma mark 插入排序
- (void)gly_insertionSort:(NSString *)propertyName result:(NSComparisonResult)result
{
    for (NSInteger i = 1; i < self.count; i++)
    {
        id aimObj = self[i];
        NSNumber *aimNumber = [aimObj valueForKey:propertyName];
        NSInteger j = i - 1;
        
        for (; j >= 0; j--)
        {
            id obj = self[j];
            NSNumber *number = [obj valueForKey:propertyName];;
            if ([number compare:aimNumber] == result)
            {
                [self replaceObjectAtIndex:j + 1 withObject:self[j]];
            }
            else
            {
                break;
            }
        }
        self[j + 1] = aimObj;
    }
}

现在,我们来看点稍微复杂的东西。我这里还是有三个问题要问你。

第一,插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是0(1),也就是说,这是一个原地排序算法。

第二,插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

第三,插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为O(n)。 注意,这里是从尾到头遍历已经有序的数据

如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为O(n2)。

在数组中插入一个数据的平均时间复杂度是O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行n次插入操作,所以平均时间复杂度为O(n2)。

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

image.png

照例,也有三个问题需要你思考,不过前面两种排序算法我已经分析得很详细了,这里就直接公布答案了。

首先,选择排序空间复杂度为0(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为0(n2)。 你可以自己来分析看看。

那选择排序是稳定的排序算法吗?这个问题我着重来说一下。

答案是否定的,选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

比如5, 8, 5, 2, 9这样一-组数据,使用选择排序算法来排序的话,第一次找到最小元素 2,与第一个5交换位置,那第一个5和中间的5顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。

希尔排序

希尔排序**(Shell's Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是插入排序算法的一种更高效的改进版本。对于中等规模的数据效果显著,希尔排序是非稳定排序算法。

希尔排序核心思想:设待排序元素序列有n个元素,首先取一个整数increment(小于n)作为间隔将全部元素分为increment个子序列,所有距离为increment的元素放在同一个子序列中,在每一个子序列中分别实行直接插入排序。然后缩小间隔increment,重复上述子序列划分和排序工作。直到最后取increment=1,将所有元素放在同一个子序列中排序为止。 由于开始时,increment的取值较大,每个子序列中的元素较少,排序速度较快,到排序后期increment取值逐渐变小,子序列中元素个数逐渐增多,但由于前面工作的基础,大多数元素已经基本有序,所以排序速度仍然很快。

首先它把较大的数据集合分割成若干个小组(逻辑上分组),然后对每一个小组分别进行插入排序,此时,插入排序所作用的数据量比较小(每一个小组),插入的效率比较高

1>下面给出一个数据列:


image.png

2>第一趟取increment的方法是:n/3向下取整=3(关于increment的取法之后会有介绍)。将整个数据列划分为间隔为3的3个子序列,然后对每一个子序列执行直接插入排序,相当于对整个序列执行了部分排序调整。图解如下:


image.png

3>第二趟将间隔increment= increment/3向下取整+1=2,将整个元素序列划分为2个间隔为2的子序列,分别进行排序。图解如下:
image.png

4>第3趟把间隔缩小为increment= increment/3向下取整+1=1,当增量为1的时候,实际上就是把整个数列作为一个子序列进行插入排序,图解如下:


image.png

5>直到increment=1时,就是对整个数列做最后一次调整,因为前面的序列调整已经使得整个序列部分有序,所以最后一次调整也变得十分轻松,这也是希尔排序性能优越的体现。

直接上代码:

- (void)gly_shellSort:(NSString *)propertyName result:(NSComparisonResult)result
{
    NSInteger gap = (NSInteger)self.count / 2;
    while (gap >= 1)
    {
        for (NSInteger i = gap ; i < self.count; i++)
        {
            id tempObj = self[i];
            NSNumber *tempNumber = [tempObj valueForKey:propertyName];
            NSInteger j = i;
            
            while (j >= gap && [[self[j - gap] valueForKey:propertyName] compare:tempNumber] == result)
            {
                [self replaceObjectAtIndex:j withObject:[self objectAtIndex:j - gap]];
                j -= gap;
            }
            
            [self replaceObjectAtIndex:j withObject:tempObj];
        }
        
        gap = gap / 2;
    }
}

参考1
参考2

最后总结:

  • 冒泡、插入和选择排序的时间复杂度都是 O(n2),比较高,适合小规模数据的排序
  • 希尔排序的时间复杂度为O(n(1.3—2)),因此中等大小规模表现良好
  • 接下来讲到的快速排序和归并排序的时间复杂度均为O(nlogn),适合大规模数据的排序。

最后的最后:

自己写了一个NSMutableArray+GLYSort算法分类,只需1行代码,即可完成复杂排序操作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容