机器学习入门基础之模型篇-----二元分类和多元分类

说起机器学习,大家熟知小到垃圾邮件拦截,大到阿尔法狗(AlphaGo) 击败国际围棋冠军的无数应用。但是到底什么是机器学习,机器学习都学习什么,机器到底怎么学习。很多人对这些概念还是混沌不清。所以平时经常被问到或者听到的争论就是:机器学习这么强大,会不会征服人类,取代人类主宰世界。

机器学习是一个比较广阔的知识领域,涉及到很多数学统计和计算机的相关知识。 要想深入了解,需要系统学习和大量的时间。 但是如果我们很清楚地知道机器学习如果用一句话来概括就是:通过大量的训练,使得机器把输入的数据整理出有用的知识输出,这种输出或者是分类或者是回归。分类问题是要预测类别,回归问题是要预测值。

如下图,训练数据集输入给训练模型,模型达到一定的准确率后,可以进行测试,把测试数据输入给模型,得到预期要得到的结果。

所以,如果我们要了解机器学习,主要就是要了解中间的训练环节,也就是机器学习的训练模型。这部分才是机器学习的核心。如果我们对训练模型有一定地了解了。我们可以从我们要处理的实际问题出发,采用相依的训练模型,来做机器学习的应用,得到我们想要的结果。我们就能回答机器到底能学习什么和如何学习的问题。

下面我们将详细讲述如下机器学习训练模型,也叫做训练方法: 二元分类,多元分类,打分,排名,概率预测,树模型,规则模型,线性模型,基于距离的模型,概率模型,梯度下降,多项式回归,正则化线性回归,逻辑回归,支持向量机,决策树,集成学习,随即森林,深度神经网络,卷积神经网络,递归神经网路,强化学习,偏好学习,多任务学习,在线学习。这些模型有的只用于分类,有的只用于回归,也有的既能用于分类还能用于回归。

二元分类(binary classification),是机器学习里比较早就应用的学习模型,比较著名的应用就是垃圾邮件分类识别。 二元分类一般分为正例(positive)和反例(negative)。其他还有医疗诊断和信用卡欺诈识别。分出垃圾邮件和特殊疾病的类都是正例类别(positive class)。一个简单的分类方法就是训练集上,做出一个特征树,把每个特征树的叶子上各个类别的数量标出来,选择大多数的类别,作为这个叶子的类别。这样特征树就变成了决策树。


图一


如上图一所示,找出一批邮件,作为训练集,垃圾邮件有20封 出现保险字样,正常邮件有5封出现保险字样,在没有保险字样的邮件里,出现彩票字样的垃圾邮件有10封,正常邮件有5封。没有出现保险和彩票字样的邮件,垃圾邮件有20封,正常邮件有40封。所以每个叶子节点,取大多数类别的值 画圈所示,就得到了一棵决策树。也可以用其他方法得到各种情况的概率大小,取概率的的类别作为最后的类别。这样,我们就可以用这个决策树去判断测试集,得到测试集的数据分类。比如我们拿一些未知的邮件,这些邮件就是测试集,去按照这个决策树的条件去判断每一封测试集的邮件,最后得出每个邮件是不是垃圾邮件。

二元分类模型不止是决策树,还有线性模型等等,都可以把现有数据分成两类。

了解了二元分类的过程,我们可以扩展到多元分类(multi-class classification),顾名思义就是分类不止是两类,而是多类。如果你有一个二元分类模型,比如线性模型,有很多方法可以把他们变成K 类分类器。一对多模式(one-versus-rest) ,训练K 个二元分类器,第一份分类器,把类一 C1 从其他类里分出来,第二个分类器把类二 C2 从其他类里分出来,如此继续。当我们训练第i 类时,我们把第i类 Ci的所有实例,当作正例,其他类都是反例。比方说,分第一类时,只把第一类作为正例,其他作为反例,找到第一类。还有一对一模式(one-versus-one), 在这种模式下,训练k(k-1)/2个二元分类器,每对不同的类只训练一次。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348

推荐阅读更多精彩内容