714.-买卖股票的最佳时机含手续费-188买股票最佳时机

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

思路:
1.确定状态 某一天的状态分为两种一种dp[i][0]代表该天交易后不持有股票,dp[i][1]代表该天交易后持有股票
2.状态转移方程
--第i天没有股票,其状态由第i-1天持有股票和第i-1天不持有股票
持有股票dp[i-1][1]+prices[i]-fee
不持有股票dp[i-1][0]
dp[i][0] = max(dp[i-1][0],dp[i-1][1]+prices[i]-fee)
--第i天有股票,其状态由第i-1天持有股票和第i-1天不持有股票
持有股票dp[i-1][1]
不持有股票,需要买入股票dp[i-1][0]- prices[i]
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
3.边界条件
第0天[0,-prices[0]],第n-1天卖出股票利润最大
4.计算顺序--顺序计算

n = len(prices)
# 定义一个n行2列的数组
dp = [[0, -prices[0]]] + [[0, 0] for _ in range(n - 1)]
for i in range(1, n):
    dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)
    dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
return dp[n - 1][0]

买股票最佳时机

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 

1.确定状态
buy[i][j]代表第i天恰好j笔交易,手中持有股票;
sell[i][j]代表第i天恰好进行j笔交易,手中没有股票
根据是否是第i天买入的分为两种情况
--不是第i天买入的
--是第i天买入的并且恰好进行了j笔交易
2.状态转移方程
buy[i][j] = max(buy[i-1][j],sell[i-1][j]-prices[i])
sell[i][j] = max(sell[i-1][j],buy[i-1][j-1]+prices[i])
3.确定边界条件
第0天持有股票为buy[0][0]=-prices[0]
第0天不持有股票为sell[0][0] = 0
buy[0][1...k] = 非法可设置为负无穷
sell[0][1...k] = 非法可设置为负无穷
进行0笔交易时,第i天开始买股票
buy[i][0] = max(buy[i-1][0],sell[i-1][j]-prices[i])
优化n个股票最多进行n/2次交易

if not prices:
    return 0
n = len(prices)
k = min(k,n//2)
# 开辟k+1 的数组
buy = [[0]*(k+1) for _ in range(n)]
sell = [[0]*(k+1) for _ in range(n)]
# 初始化
buy[0][0],0= -prices[0],sell[0][0]
for i in range(1,k+1):
    buy[0][i] =sell[0][i]= float("-inf")
for i in range(1,n):
    buy[i][0] = max(buy[i-1][0],sell[i-1][0]-prices[i])
    for j in range(1,k+1):
        buy[i][j] = max(buy[i-1][j],sell[i-1][j]-prices[i])
        sell[i][j] = max(sell[i-1][j],buy[i-1][j-1]+prices[i])

return max(sell[n-1])
``


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,039评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,426评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,417评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,868评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,892评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,692评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,416评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,326评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,782评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,957评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,102评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,790评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,442评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,996评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,113评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,332评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,044评论 2 355

推荐阅读更多精彩内容