Spark ML 特征工程之 One-Hot Encoding

1.什么是One-Hot Encoding

One-Hot Encoding 也就是独热码,直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制。在机器学习(Logistic Regression,SVM等)中对于离散型的分类型的数据,需要对其进行数字化比如说性别这一属性,只能有男性或者女性或者其他这三种值,如何对这三个值进行数字化表达?一种简单的方式就是男性为0,女性为1,其他为2,这样做有什么问题?
使用上面简单的序列对分类值进行表示后,进行模型训练时可能会产生一个问题就是特征的因为数字值得不同影响模型的训练效果,在模型训练的过程中不同的值使得同一特征在样本中的权重可能发生变化,假如直接编码成1000,是不是比编码成1对模型的的影响更大。为了解决上述的问题,使训练过程中不受到因为分类值表示的问题对模型产生的负面影响,引入独热码对分类型的特征进行独热码编码。

2.One-Hot Encoding在Spark中的应用

测试数据地址

2.1 数据集预览

数据中字段含义如下:
affairs:Double //是否有婚外情
gender:String //性别 
age:Double //年龄 
yearsmarried:Double //婚龄 
children:String //是否有小孩 
religiousness:Double //宗教信仰程度(5分制,1分表示反对,5分表示非常信仰)
education:Double //学历
occupation:Double //职业(逆向编号的戈登7种分类) 
rating:Double //对婚姻的自我评分(5分制,1表示非常不幸福,5表示非常幸福)

2.2 加载数据集

    val conf = new SparkConf().setMaster("local[4]").setAppName(getClass.getSimpleName).set("spark.testing.memory", "2147480000")
    val sparkContext = new SparkContext(conf)
    val sqlContext = new HiveContext(sparkContext)
    val colArray2 = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
    val logPath = "E:\\spark_workspace\\spark-study\\src\\main\\files\\lr_test03.json"
    import sqlContext.implicits._

    val dataDF = sqlContext.read.json(logPath).select($"affairs", $"gender", $"age", $"yearsmarried", $"children", $"religiousness", $"education", $"occupation", $"rating")
    

2.3 使用OneHotEncoder处理数据集

    /**要进行OneHotEncoder编码的字段*/
    val categoricalColumns = Array("gender", "children")
    /**采用Pileline方式处理机器学习流程*/
    val stagesArray = new ListBuffer[PipelineStage]()
    for (cate <- categoricalColumns) {
      /**使用StringIndexer 建立类别索引*/
      val indexer = new StringIndexer().setInputCol(cate).setOutputCol(s"${cate}Index")
      /**使用OneHotEncoder将分类变量转换为二进制稀疏向量*/
      val encoder = new OneHotEncoder().setInputCol(indexer.getOutputCol).setOutputCol(s"${cate}classVec")
      stagesArray.append(indexer,encoder)
    }

2.4 使用VectorAssembler合并所有特征为单个向量

    val numericCols = Array("affairs", "age", "yearsmarried", "religiousness", "education", "occupation", "rating")
    val assemblerInputs = categoricalColumns.map(_ + "classVec") ++ numericCols
    /**使用VectorAssembler将所有特征转换为一个向量*/
    val assembler = new VectorAssembler().setInputCols(assemblerInputs).setOutputCol("features")
    stagesArray.append(assembler)

2.5 以Pipeline的形式运行各个PipelineStage

    val pipeline = new Pipeline()
    pipeline.setStages(stagesArray.toArray)
    /**fit() 根据需要计算特征统计信息*/
    val pipelineModel = pipeline.fit(dataDF)
    /**transform() 真实转换特征*/
    val dataset = pipelineModel.transform(dataDF)
    dataset.show(false)

One-Hot Encoding 之后的数据集结果如下图:

+-------+------+----+------------+--------+-------------+---------+----------+------+-----------+--------------+-------------+----------------+----------------------------------------+
|affairs|gender|age |yearsmarried|children|religiousness|education|occupation|rating|genderIndex|genderclassVec|childrenIndex|childrenclassVec|features                                |
+-------+------+----+------------+--------+-------------+---------+----------+------+-----------+--------------+-------------+----------------+----------------------------------------+
|0.0    |male  |37.0|10.0        |no      |3.0          |18.0     |7.0       |4.0   |1.0        |(1,[],[])     |1.0          |(1,[],[])       |[0.0,0.0,0.0,37.0,10.0,3.0,18.0,7.0,4.0]|
|0.0    |female|27.0|4.0         |no      |4.0          |14.0     |6.0       |4.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,27.0,4.0,4.0,14.0,6.0,4.0] |
|0.0    |female|32.0|15.0        |yes     |1.0          |12.0     |1.0       |4.0   |0.0        |(1,[0],[1.0]) |0.0          |(1,[0],[1.0])   |[1.0,1.0,0.0,32.0,15.0,1.0,12.0,1.0,4.0]|
|0.0    |male  |57.0|15.0        |yes     |5.0          |18.0     |6.0       |5.0   |1.0        |(1,[],[])     |0.0          |(1,[0],[1.0])   |[0.0,1.0,0.0,57.0,15.0,5.0,18.0,6.0,5.0]|
|0.0    |male  |22.0|0.75        |no      |2.0          |17.0     |6.0       |3.0   |1.0        |(1,[],[])     |1.0          |(1,[],[])       |[0.0,0.0,0.0,22.0,0.75,2.0,17.0,6.0,3.0]|
|0.0    |female|32.0|1.5         |no      |2.0          |17.0     |5.0       |5.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,32.0,1.5,2.0,17.0,5.0,5.0] |
|0.0    |female|22.0|0.75        |no      |2.0          |12.0     |1.0       |3.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,22.0,0.75,2.0,12.0,1.0,3.0]|
|0.0    |male  |57.0|15.0        |yes     |2.0          |14.0     |4.0       |4.0   |1.0        |(1,[],[])     |0.0          |(1,[0],[1.0])   |[0.0,1.0,0.0,57.0,15.0,2.0,14.0,4.0,4.0]|
|0.0    |female|32.0|15.0        |yes     |4.0          |16.0     |1.0       |2.0   |0.0        |(1,[0],[1.0]) |0.0          |(1,[0],[1.0])   |[1.0,1.0,0.0,32.0,15.0,4.0,16.0,1.0,2.0]|
|0.0    |male  |22.0|1.5         |no      |4.0          |14.0     |4.0       |5.0   |1.0        |(1,[],[])     |1.0          |(1,[],[])       |[0.0,0.0,0.0,22.0,1.5,4.0,14.0,4.0,5.0] |
|0.0    |male  |37.0|15.0        |yes     |2.0          |20.0     |7.0       |2.0   |1.0        |(1,[],[])     |0.0          |(1,[0],[1.0])   |[0.0,1.0,0.0,37.0,15.0,2.0,20.0,7.0,2.0]|
|0.0    |male  |27.0|4.0         |yes     |4.0          |18.0     |6.0       |4.0   |1.0        |(1,[],[])     |0.0          |(1,[0],[1.0])   |[0.0,1.0,0.0,27.0,4.0,4.0,18.0,6.0,4.0] |
|0.0    |male  |47.0|15.0        |yes     |5.0          |17.0     |6.0       |4.0   |1.0        |(1,[],[])     |0.0          |(1,[0],[1.0])   |[0.0,1.0,0.0,47.0,15.0,5.0,17.0,6.0,4.0]|
|0.0    |female|22.0|1.5         |no      |2.0          |17.0     |5.0       |4.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,22.0,1.5,2.0,17.0,5.0,4.0] |
|0.0    |female|27.0|4.0         |no      |4.0          |14.0     |5.0       |4.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,27.0,4.0,4.0,14.0,5.0,4.0] |
|0.0    |female|37.0|15.0        |yes     |1.0          |17.0     |5.0       |5.0   |0.0        |(1,[0],[1.0]) |0.0          |(1,[0],[1.0])   |[1.0,1.0,0.0,37.0,15.0,1.0,17.0,5.0,5.0]|
|0.0    |female|37.0|15.0        |yes     |2.0          |18.0     |4.0       |3.0   |0.0        |(1,[0],[1.0]) |0.0          |(1,[0],[1.0])   |[1.0,1.0,0.0,37.0,15.0,2.0,18.0,4.0,3.0]|
|0.0    |female|22.0|0.75        |no      |3.0          |16.0     |5.0       |4.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,22.0,0.75,3.0,16.0,5.0,4.0]|
|0.0    |female|22.0|1.5         |no      |2.0          |16.0     |5.0       |5.0   |0.0        |(1,[0],[1.0]) |1.0          |(1,[],[])       |[1.0,0.0,0.0,22.0,1.5,2.0,16.0,5.0,5.0] |
|0.0    |female|27.0|10.0        |yes     |2.0          |14.0     |1.0       |5.0   |0.0        |(1,[0],[1.0]) |0.0          |(1,[0],[1.0])   |[1.0,1.0,0.0,27.0,10.0,2.0,14.0,1.0,5.0]|
+-------+------+----+------------+--------+-------------+---------+----------+------+-----------+--------------+-------------+----------------+----------------------------------------+

2.6 训练和评估模型

    /**随机分割测试集和训练集数据,指定seed可以固定数据分配*/
    val Array(trainingDF, testDF) = dataset.randomSplit(Array(0.6, 0.4), seed = 12345)
    println(s"trainingDF size=${trainingDF.count()},testDF size=${testDF.count()}")
    val lrModel = new LogisticRegression().setLabelCol("affairs").setFeaturesCol("features").fit(trainingDF)
    val predictions = lrModel.transform(testDF).select($"affairs".as("label"), $"features", $"rawPrediction", $"probability", $"prediction")
    predictions.show(false)
    /**使用BinaryClassificationEvaluator来评价我们的模型。在metricName参数中设置度量。*/
    val evaluator = new BinaryClassificationEvaluator()
    evaluator.setMetricName("areaUnderROC")
    val auc= evaluator.evaluate(predictions)
    println(s"areaUnderROC=$auc")

使用model 预测后的数据如下图所示:

+-----+-----------------------------------------+----------------------------------------+-------------------------------------------+----------+
|label|features                                 |rawPrediction                           |probability                                |prediction|
+-----+-----------------------------------------+----------------------------------------+-------------------------------------------+----------+
|0.0  |[1.0,0.0,0.0,22.0,0.125,4.0,14.0,4.0,5.0]|[24.24907721362884,-24.24907721362884]  |[0.999999999970572,2.942792055040055E-11]  |0.0       |
|0.0  |[1.0,0.0,0.0,22.0,0.417,1.0,17.0,6.0,4.0]|[21.290119589459323,-21.290119589459323]|[0.9999999994326925,5.673075233382041E-10] |0.0       |
|0.0  |[1.0,0.0,0.0,22.0,0.417,5.0,14.0,1.0,4.0]|[24.17979109657276,-24.17979109657276]  |[0.9999999999684608,3.1539162239002745E-11]|0.0       |
|0.0  |[1.0,1.0,0.0,22.0,0.417,3.0,14.0,3.0,5.0]|[22.67775610810491,-22.67775610810491]  |[0.9999999998583633,1.4163665456478983E-10]|0.0       |
|0.0  |[1.0,0.0,0.0,22.0,0.75,2.0,12.0,1.0,3.0] |[18.511403509878832,-18.511403509878832]|[0.9999999908672915,9.13270857267764E-9]   |0.0       |
|0.0  |[1.0,0.0,0.0,22.0,0.75,4.0,16.0,1.0,5.0] |[25.35929557565844,-25.35929557565844]  |[0.999999999990304,9.69611742832185E-12]   |0.0       |
|0.0  |[1.0,0.0,0.0,22.0,0.75,5.0,14.0,3.0,5.0] |[25.260012900022847,-25.260012900022847]|[0.9999999999892919,1.070818300382037E-11] |0.0       |
|0.0  |[1.0,0.0,0.0,22.0,0.75,5.0,18.0,1.0,5.0] |[27.56176640273893,-27.56176640273893]  |[0.9999999999989282,1.0717091528412073E-12]|0.0       |
|0.0  |[1.0,0.0,0.0,22.0,1.5,2.0,14.0,4.0,5.0]  |[21.806773356131036,-21.806773356131036]|[0.9999999996615936,3.3840647423836113E-10]|0.0       |
|0.0  |[1.0,0.0,0.0,22.0,1.5,2.0,16.0,5.0,5.0]  |[22.87962909201085,-22.87962909201085]  |[0.9999999998842548,1.1574529263994485E-10]|0.0       |
|0.0  |[1.0,0.0,0.0,22.0,1.5,2.0,16.0,5.0,5.0]  |[22.87962909201085,-22.87962909201085]  |[0.9999999998842548,1.1574529263994485E-10]|0.0       |
|0.0  |[1.0,0.0,0.0,22.0,1.5,4.0,16.0,5.0,3.0]  |[22.617887847315348,-22.617887847315348]|[0.9999999998496247,1.5037516453560028E-10]|0.0       |
|0.0  |[1.0,1.0,0.0,22.0,1.5,3.0,16.0,5.0,5.0]  |[23.505953663596607,-23.505953663596607]|[0.9999999999381279,6.187198251529256E-11] |0.0       |
|0.0  |[1.0,0.0,0.0,22.0,4.0,4.0,17.0,5.0,5.0]  |[25.142053761516753,-25.142053761516753]|[0.9999999999879512,1.2048827525325212E-11]|0.0       |
|0.0  |[1.0,0.0,0.0,27.0,1.5,2.0,16.0,6.0,5.0]  |[23.342953469838886,-23.342953469838886]|[0.9999999999271745,7.282560759398736E-11] |0.0       |
|0.0  |[1.0,0.0,0.0,27.0,1.5,2.0,18.0,6.0,5.0]  |[24.454819713457812,-24.454819713457812]|[0.9999999999760445,2.3955582882827004E-11]|0.0       |
|0.0  |[1.0,0.0,0.0,27.0,1.5,3.0,18.0,5.0,2.0]  |[21.920009187230548,-21.920009187230548]|[0.9999999996978233,3.021766947986581E-10] |0.0       |
|0.0  |[1.0,0.0,0.0,27.0,4.0,2.0,18.0,5.0,5.0]  |[24.01911260197023,-24.01911260197023]  |[0.9999999999629634,3.703667040712842E-11] |0.0       |
|0.0  |[1.0,0.0,0.0,27.0,4.0,3.0,16.0,5.0,4.0]  |[22.776375736003562,-22.776375736003562]|[0.9999999998716649,1.2833517289922962E-10]|0.0       |
|0.0  |[1.0,1.0,0.0,27.0,4.0,2.0,18.0,6.0,1.0]  |[18.629921259118063,-18.629921259118063]|[0.999999991887999,8.112000996701378E-9]   |0.0       |
+-----+-----------------------------------------+----------------------------------------+-------------------------------------------+----------+
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容