冗余表数据一致性

【转自https://www.w3cschool.cn/architectroad/architectroad-redundant-table.html

本文主要讨论四个问题:
(1)为什么会有冗余表的需求
(2)如何实现冗余表
(3)正反冗余表谁先执行
(4)冗余表如何保证数据的一致性

一、需求缘起


互联网很多业务场景的数据量很大,此时数据库架构要进行水平切分,水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了。

例如订单表,业务上对用户和商家都有订单查询需求:
Order(oid, info_detail)
T(buyer_id, seller_id, oid)

如果用buyer_id来分库,seller_id的查询就需要扫描多库。
如果用seller_id来分库,buyer_id的查询就需要扫描多库。

这类需求,为了做到高吞吐量低延时的查询,往往使用“数据冗余”的方式来实现,就是文章标题里说的“冗余表”

T1(buyer_id, seller_id, oid)
T2(seller_id, buyer_id, oid)

同一个数据,冗余两份,一份以buyer_id来分库,满足买家的查询需求;
一份以seller_id来分库,满足卖家的查询需求。

二、冗余表的实现方案


【方法一:服务同步写】

服务层同步写冗余数据

顾名思义,由服务层同步写冗余数据,如上图1-4流程:

(1)业务方调用服务,新增数据
(2)服务先插入T1数据
(3)服务再插入T2数据
(4)服务返回业务方新增数据成功

优点
(1)不复杂,服务层由单次写,变两次写
(2)数据一致性相对较高(因为双写成功才返回)

缺点
(1)请求的处理时间增加(要插入次,时间加倍)
(2)数据仍可能不一致,例如第二步写入T1完成后服务重启,则数据不会写入T2
(3)涉及分布式事务,比较复杂

如果系统对处理时间比较敏感,引出常用的第二种方案

【方法二:服务异步写】

服务层异步写

数据的双写并不再由服务来完成,服务层异步发出一个消息,通过消息总线发送给一个专门的数据复制服务来写入冗余数据,如上图1-6流程:

(1)业务方调用服务,新增数据
(2)服务先插入T1数据
(3)服务向消息总线发送一个异步消息(发出即可,不用等返回,通常很快就能完成)
(4)服务返回业务方新增数据成功
(5)消息总线将消息投递给数据同步中心
(6)数据同步中心插入T2数据

优点
(1)请求处理时间短(只插入1次)

缺点
(1)系统的复杂性增加了,多引入了一个组件(消息总线)和一个服务(专用的数据复制服务)
(2)因为返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)
(3)在消息总线丢失消息时,冗余表数据会不一致
如果想解除“数据冗余”对系统的耦合,引出常用的第三种方案

【方法三:线下异步写】

线下异步写

数据的双写不再由服务层来完成,而是由线下的一个服务或者任务来完成,如上图1-6流程:

(1)业务方调用服务,新增数据
(2)服务先插入T1数据
(3)服务返回业务方新增数据成功
(4)数据会被写入到数据库的log中
(5)线下服务或者任务读取数据库的log
(6)线下服务或者任务插入T2数据

优点
(1)数据双写与业务完全解耦
(2)请求处理时间短(只插入1次)

缺点
(1)返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)
(2)数据的一致性依赖于线下服务或者任务的可靠性

上述三种方案各有优缺点,但不管哪种方案,都会面临“究竟先写T1还是先写T2”的问题?这该怎么办呢?

笔者在工作过程中主要用的是第三种方法

三、究竟先写正表还是反表


对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:

【如果出现不一致】,谁先做对业务的影响较小,就谁先执行。

以上文的订单生成业务为例,buyer和seller冗余表都需要插入数据:
T1(buyer_id, seller_id, oid)
T2(seller_id, buyer_id, oid)

用户下单时,如果“先插入buyer表T1,再插入seller冗余表T2”,当第一步成功、第二步失败时,出现的业务影响是“买家能看到自己的订单,卖家看不到推送的订单”

相反,如果“先插入seller表T2,再插入buyer冗余表T1”,当第一步成功、第二步失败时,出现的业务影响是“卖家能看到推送的订单,卖家看不到自己的订单”

由于这个生成订单的动作是买家发起的,买家如果看不到订单,会觉得非常奇怪,并且无法支付以推动订单状态的流转,此时即使卖家看到有人下单也是没有意义的。

因此,在此例中,应该先插入buyer表T1,再插入seller表T2。
however,记住结论:【如果出现不一致】,谁先做对业务的影响较小,就谁先执行。

四、如何保证数据的一致性


从二节和第三节的讨论可以看到,不管哪种方案,因为两步操作不能保证原子性,总有出现数据不一致的可能,那如何解决呢?

【方法一:线下扫面正反冗余表全部数据】

线下扫面正反冗余表全部数据

如上图所示,线下启动一个离线的扫描工具,不停的比对正表T1和反表T2,如果发现数据不一致,就进行补偿修复。

优点
(1)比较简单,开发代价小
(2)线上服务无需修改,修复工具与线上服务解耦
缺点
(1)扫描效率低,会扫描大量的“已经能够保证一致”的数据
(2)由于扫描的数据量大,扫描一轮的时间比较长,即数据如果不一致,不一致的时间窗口比较长

有没有只扫描“可能存在不一致可能性”的数据,而不是每次扫描全部数据,以提高效率的优化方法呢?

【方法二:线下扫描增量数据】

线下扫描增量数据

每次只扫描增量的日志数据,就能够极大提高效率,缩短数据不一致的时间窗口,如上图1-4流程所示:
(1)写入正表T1
(2)第一步成功后,写入日志log1
(3)写入反表T2
(4)第二步成功后,写入日志log2

当然,我们还是需要一个离线的扫描工具,不停的比对日志log1和日志log2,如果发现数据不一致,就进行补偿修复

优点
(1)虽比方法一复杂,但仍然是比较简单的
(2)数据扫描效率高,只扫描增量数据
缺点
(1)线上服务略有修改(代价不高,多写了2条日志)
(2)虽然比方法一更实时,但时效性还是不高,不一致窗口取决于扫描的周期

有没有实时检测一致性并进行修复的方法呢?

【方法三:实时线上“消息对”检测】利用了对账的思想

实时线上“消息对”检测

这次不是写日志了,而是向消息总线发送消息,如上图1-4流程所示:
(1)写入正表T1
(2)第一步成功后,发送消息msg1
(3)写入反表T2
(4)第二步成功后,发送消息msg2

这次不是需要一个周期扫描的离线工具了,而是一个实时订阅消息的服务不停的收消息。

假设正常情况下,msg1和msg2的接收时间应该在3s以内,如果检测服务在收到msg1后没有收到msg2,就尝试检测数据的一致性,不一致时进行补偿修复

优点
(1)效率高
(2)实时性高

缺点
(1)方案比较复杂,上线引入了消息总线这个组件
(2)线下多了一个订阅总线的检测服务
(3)消息总线的稳定性也要考虑

however,技术方案本身就是一个投入产出比的折衷,可以根据业务对一致性的需求程度决定使用哪一种方法。我这边有过好友数据正反表的业务,使用的就是方法二。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342