Deep semantic segmentation of natural and medical images: a review

论文:Deep semantic segmentation of natural and medical images: a review | SpringerLink

摘要

1. 简介

2. 网络架构改进

    2.1 全卷积神经网络(FCN)用于语义分割

    2.2 编解码器语义图像分割网络

    2.3 降低图像分割网络的计算复杂度

        在降低网络复杂度方面做得探索有:通过张量分解、通道剪枝、网络剪枝或者网络连接稀疏化等方式简化网络结构以及NAS(network architecture search)

    2.4 基于注意力的图像语义分割

    2.5 对抗性语义图像分割

    主要用GAN判别网络来判断输入图像是来自于原图还是分割后的图像

    2.6 小结

    目前主流的语义分割模型是基于编解码结构的U-Net系列,相关研究又借助空洞卷积、空间金字塔提升U-Net性能

3. 适用于医学图像的结构改进

    Part A 模型压缩

    Part B 编解码分割框架

    Part C 注意力机制

    Part D GAN

    Part E 循环神经网络

    循环神经网络RNN主要用来处理序列模型,比如LSTM长短时记忆网络通过将上一时间步的状态作为当前时间步输入的一部分,有效保证了梯度的流动。而将RNN用于医学图像分割主要是考虑到医学图像具有一定的时间依赖性,比如将RNN的自循环机制结合FCN可以保留医学图像时间和空间上的信息用于分割;还有用RNN与CNN结合,主要用来处理包含时间意义的3D、4D医学图像。

4. 基于优化函数的改进

    4.1 交叉熵

    4.2 加权交叉熵

    4.3 Focal Loss

    4.4 基于重叠度量的损失函数

        4.4.1 Dice Loss / F1 Score

        4.4.2 Tversky Loss

        4.4.3 指数对数损失(Exponential Logarithmic Loss Wong)

        4.4.4 Lovaˊsz-Softmax loss

        4.4.5 Boundary Loss

        4.4.6 总结

5. 医学影像领域针对优化函数的改进

    5.1 正则交叉熵

    5.2 轮廓能量最小化

    5.3 Hausdorff距离

6. 基于图像合成的方法应用于医学图像分割

7. 弱监督方法

8. 多任务模型

9. 在自然图像上测试的主要模型的总结

10. 未来改进方向

    10.1 网络架构

     目前性能最佳的分割网络是以编解码结构辅助长短链接的这种网络结构。skip connection的存在有助于信息的流动、防止梯度消失,对分割和分类都有提升;编解码结构可以学习到更加丰富的特征表达,但也增加了计算成本,部分辨别力不强的特征也会不断传递下去,未来的优化方向之一就是如何优化skip connection传递的数据;另一方面则有通过空洞卷积、空间金字塔改善每个cell的性能。是否能设计出提取到新的特征层也是潜在的一个方向

    10.2序列模型

    主要用于3D医学图像的分割,可以将其视为具有时间维度的序列模型。将3D信息作为一个整体处理可以捕获到更多的几何特征信息,因此未来可以就3D图像按序列模型还是立体模型来处理也是值得探索的一个方向

    10.3 损失函数

     损失函数的优化在前文已叙述过。如果需要进行改进的话,可以在交叉熵损失函数或重叠度损失函数的基础上,加入由先验知识指导的正则化项;另一个可尝试的方向是仿照NAS进行自动损失函数的设计。

    10.4 其他潜在方向

    (1)结合先验知识完成像素级别的场景理解(2)由于医学图像标准、种类不一、还有独特的噪声机制,加之伦理、道德方面的限制和约束,使得缺少一致、规范的评判与对比(3)制备大规模开源的2D/3D医学分割图像数据集(4)探索增强学习在语义分割方面的应用(5)探究导致模型预测中假阳性等出现的原因(6)探究医学图像分割的弱监督模型以及使用图像级别标注的少样本学习方法



[图1:本文概述了基于深度学习的分割方法


图2:一个典型的基于深度神经网络的语义分割管道。管道中的每个组件表示本文中涵盖相应贡献的部分




论文阅读——Deep Semantic Segmentation of Natural and Medical Images: A Review_黄小米吖的博客-CSDN博客

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,498评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,668评论 3 406
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,857评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,305评论 1 303
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,308评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,747评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,078评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,080评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,649评论 1 327
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,644评论 3 347
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,760评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,352评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,076评论 3 341
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,490评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,651评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,353评论 3 383
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,828评论 2 367