感知哈希算法-找出相似的图片

原理讲解

参考Neal Krawetz博士的文章, 实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹越相似, 说明两张图片就越相似。
但关键是如何根据图片计算出指纹呢? 下面说明一下原理:

1、缩小图片尺寸

将图片缩小到8x8的尺寸,总共64个像素。 这一步的作用是去除各种图片尺寸和图片比例的差异,只保留结构、明暗等基本信息。


2012071213282834.png

2、转为灰度图片

将缩小后的图片,转为64级灰度图片。


2012071213321187.png

3、计算灰度平均值

计算图片中所有像素的灰度平均值

4、比较像素的灰度

将每个像素的灰度与平均值进行比较,如果大于或等于平均值记为1,小于平均值记为0。

5、计算哈希值

将上一步的比较结果,组合在一起,就构成了一个64位的二进制整数,这就是这张图片的指纹。

6、对比图片指纹

得到图片的指纹后,就可以对比不同的图片的指纹,计算出64位中有多少位是不一样的,如果不相同的数据位数不超过5,就说明两张图片很相似,如果大于10,说明它们是两张不同的图片。

代码实现

using System;
using System.IO;
using System.Drawing;
 
namespace SimilarPhoto
{
    class SimilarPhoto
    {
        Image SourceImg;
 
        public SimilarPhoto(string filePath)
        {
            SourceImg = Image.FromFile(filePath);
        }
 
        public SimilarPhoto(Stream stream)
        {
            SourceImg = Image.FromStream(stream);
        }
 
        public String GetHash()
        {
            Image image = ReduceSize();
            Byte[] grayValues = ReduceColor(image);
            Byte average = CalcAverage(grayValues);
            String reslut = ComputeBits(grayValues, average);
            return reslut;
        }
 
        // Step 1 : Reduce size to 8*8
        private Image ReduceSize(int width = 8, int height = 8)
        {
            Image image = SourceImg.GetThumbnailImage(width, height, () => { return false; }, IntPtr.Zero);
            return image;
        }
 
        // Step 2 : Reduce Color
        private Byte[] ReduceColor(Image image)
        {
            Bitmap bitMap = new Bitmap(image);
            Byte[] grayValues = new Byte[image.Width * image.Height];
 
            for(int x = 0; x<image.Width; x++)
                for (int y = 0; y < image.Height; y++)
                {
                    Color color = bitMap.GetPixel(x, y);
                    byte grayValue = (byte)((color.R * 30 + color.G * 59 + color.B * 11) / 100);
                    grayValues[x * image.Width + y] = grayValue;
                }
            return grayValues;
        }
 
        // Step 3 : Average the colors
        private Byte CalcAverage(byte[] values)
        {
            int sum = 0;
            for (int i = 0; i < values.Length; i++)
                sum += (int)values[i];
            return Convert.ToByte(sum / values.Length);
        }
 
        // Step 4 : Compute the bits
        private String ComputeBits(byte[] values, byte averageValue)
        {
            char[] result = new char[values.Length];
            for (int i = 0; i < values.Length; i++)
            {
                if (values[i] < averageValue)
                    result[i] = '0';
                else
                    result[i] = '1';
            }
            return new String(result);
        }
 
        // Compare hash
        public static Int32 CalcSimilarDegree(string a, string b)
        {
            if (a.Length != b.Length)
                throw new ArgumentException();
            int count = 0;
            for (int i = 0; i < a.Length; i++)
            {
                if (a[i] != b[i])
                    count++;
            }
            return count;
        }
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355

推荐阅读更多精彩内容