python爬虫(一)_爬虫原理和数据抓取

本篇将开始介绍Python原理,更多内容请参考:Python学习指南

为什么要做爬虫

著名的革命家、思想家、政治家、战略家、社会改革的主要领导人物马云曾经在2015年提到由IT转到DT,何谓DT,DT即数据技术,由数据在推倒人们的衣食住行,当今时代是一个大数据时代,数据从何而来?

爬虫是什么?

百度百科:网络爬虫

关于Python爬虫,我们需要学习的有:

  1. Python基础语法学习(基础知识)
  2. HTML页面的内容抓取(数据抓取)
  3. HTML页面的数据提取(数据清洗)
  4. Scrapy框架以及scrapy-redis分布式策略(第三方框架)
  5. 爬虫(Spider)、反爬虫(Anti-Spider)、反反爬虫(Anti-Anti-Spider)之间的斗争。。。。

通用爬虫和聚焦爬虫

网络爬虫可分为通用爬虫聚焦爬虫两种。

通用搜索引擎(Search Enging)工作原理

通用网络爬虫 从互联网中搜集网页,采集信息,这些网页信息用于为搜索引擎建立索引从而提供支持,它决定着整个引擎系统的内容是否丰富,信息是否及时,因此其性能的优劣直接影响着搜索引擎的效果。

第一步:抓取网页

搜索引擎网络爬虫的基本工作流程如下:

  1. 首先选取一部分的种子URL,将这些URL放入待抓取URL队列;
  2. 取出待抓取URL,解析DNS得到主机的IP,并将URL对应的网页下载下来,存储进已下载网页库中,并且将这些URL放进已抓取URL队列。
  3. 分析已抓取URL队列中的URL,分析其中的其它URL,并且将URL放入待抓取URL队列,从而进入下一个循环。。。


    通用爬虫流程

搜索引擎如何获取一个新网站的URL:

  1. 新网站向搜索引擎主动提交网址:(百度:http://zhanzhang.baidu.com/linksubmit/url)
  2. 在其他网站上设置一个新网站链接(尽可能处于搜索引擎爬虫爬取范围)
  3. 搜索引擎和DNS解析服务商(如DNSPod等)合作,新网站域名将被迅速抓取

但是搜索引擎蜘蛛的爬行是被输入了一定的规则的,它需要遵从一些命令或文件的内容,如标注为nofollow的链接,或者是Robots协议。

Robots协议(也叫爬虫协议、机器人协议等),全称是“网络爬虫排除标准”(Robots Exclusion Protocol),网站通过Robots协议告诉搜索引擎哪些页面可以抓取,哪些页面不能抓取,例如:

  1. 淘宝网:https://www.taobao.com/robots.txt
  2. 腾讯网:http://www.qq.com/robots.txt

第二步:数据存储

搜索引擎通过爬虫爬取到网页,将数据存入原始页面数据库。其中的页面数据与用户浏览器得到的HTML是完全一样的。

搜索引擎蜘蛛在抓取页面时,也做一定的重复内容检测,一旦遇到访问权重很低的网站上有大量抄袭、采集或者复制的内容,很可能就不再爬行。

第三步:预处理

搜索引擎将爬虫抓取回来的页面,进行各种步骤的预处理。

  • 提取文字
  • 中文分词
  • 消除噪音(比如版权申明文字、导航条、广告等...)
  • 索引处理
  • 链接关系计算
  • 特殊文件处理
  • ....

除了HTML文件外,搜索引擎还能抓取和索引以文字为基础的多种文件类型,如PDF、WORD、WPS、PPT、TXT等。我们在搜索结果中也经常会看到这种文件类型。

但搜索引擎还不能处理图片、视频、Flash这类非文字内容,也不能执行脚本和程序。

第四步:提供检索服务,网站排名

搜索引擎在对信息进行组织和处理后,为用户提供关键字检索服务,将用户检索相关的信息展示给用户。

同时会根据页面的PageRank值(链接的访问量排名)来进行网站排名,这样Rank值高的网站在搜索结果中会排名较前,当然也可以直接使用 Money 购买搜索引擎网站排名,简单粗暴。


搜索引擎工作原理

但是,这些通用搜索引擎也存在着一定的局限性

  1. 通用搜索引擎所返回的结果都是网页,而大多情况下,网页里90%的内容对用户来说都是无用的。
  2. 不同领域、不同背景的用户往往具有不同的检索目的和需求,搜索引擎无法提供针对具体某个用户的搜索结果。
  3. 万维网数据形式的丰富和网络技术的不断发展,图片、数据库、音频、视频多媒体等不同数据大量出现,通用搜索引擎对这些文件无能为力,不能很好地发现和获取。
  4. 通用搜索引擎大多提供基于关键字的检索,难以支持根据语义信息提出的查询,无法准确理解用户的具体需求。

针对这些情况,聚焦爬虫技术得以广泛使用

聚焦爬虫

聚焦爬虫,是"面向特定主题需求"的一种网络爬虫程序,它与通用搜索引擎爬虫的区别在于: 聚焦爬虫在实施网页抓取时会对内容进行处理筛选,尽量保证只抓取与需求相关的网页信息。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容