R语言学习-单因素方差分析与多重比较

单因素方差分析-aov()

单因素方差分析中,我们感兴趣的是比较分类因子定义的两个或多个组别中的因变量均值
以multcomp包中的cholesterol数据集为例,50个患者均接受降低胆固醇药物治疗(trt)五种疗法中的一种疗法。其中三种药物相同,分别是20mg一天一次(1time),10mg一天两次(2times)和5mg一天4次(4times),剩下两种方式代表候选药物

> library(multcomp)
> table(cholesterol$trt)

 1time 2times 4times  drugD  drugE 
    10     10     10     10     10 

可以看出接受每种方式的患者为10人

> aggregate(cholesterol$response,by=list(cholesterol$trt),FUN=mean)
  Group.1        x
1   1time  5.78197
2  2times  9.22497
3  4times 12.37478
4   drugD 15.36117
5   drugE 20.94752

各组均值显示drugE的降低的胆固醇最多,而1time最少

> fit<-aov(response~trt,data = cholesterol) #aov(formula,data=dataframe)
> summary(fit)
            Df Sum Sq Mean Sq F value   Pr(>F)    
trt          4 1351.4   337.8   32.43 9.82e-13 ***
Residuals   45  468.8    10.4                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

结果显示五种疗法效果极显著不同(F<0.001)
gplots()包中的plotmeans()函数可以用来绘制带有置信区间的组均值图形

> library(gplots)

载入程辑包:‘gplots’

The following object is masked from ‘package:stats’:

    lowess

> plotmeans(response~trt,data = cholesterol)
image.png

如图可以看清楚他们之间的差异

多重比较

虽然单因素方差分析对各疗法的F检验表明五种药物疗法效果不同,但是并没有告诉你哪种疗法与其他疗法不同,因此我们需要进行多重比较

TukeyHSD的成对组间比较

> TukeyHSD(fit)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = response ~ trt, data = cholesterol)

$trt
                  diff        lwr       upr     p adj
2times-1time   3.44300 -0.6582817  7.544282 0.1380949
4times-1time   6.59281  2.4915283 10.694092 0.0003542
drugD-1time    9.57920  5.4779183 13.680482 0.0000003
drugE-1time   15.16555 11.0642683 19.266832 0.0000000
4times-2times  3.14981 -0.9514717  7.251092 0.2050382
drugD-2times   6.13620  2.0349183 10.237482 0.0009611
drugE-2times  11.72255  7.6212683 15.823832 0.0000000
drugD-4times   2.98639 -1.1148917  7.087672 0.2512446
drugE-4times   8.57274  4.4714583 12.674022 0.0000037
drugE-drugD    5.58635  1.4850683  9.687632 0.0030633

可以看出2time-1time差异不显著(p=0.138),而drugE-1times差异极显著(p<0.001)
上述结果也可以用图形·表示

>par(las=2)
> par(mar=c(5,8,4,2))
> plot(TukeyHSD(fit))
image.png

图中置信区间包含0的疗法差异不显著(p>0.5)

glht()函数

mulicomp包中的glht()函数提供了更为全面的方法

> library(multcomp)
> par(mar=c(5,4,6,2))
> tuk<-glht(fit,linfct=mcp(trt="Tukey"))
image.png

如图所示,含有相同字母的说明均值差异不明显

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348

推荐阅读更多精彩内容