softmax与交叉熵

机器学习中经常遇到这几个概念,用大白话解释一下:

一、归一化

把几个数量级不同的数据,放在一起比较(或者画在一个数轴上),比如:一条河的长度几千甚至上万km,与一个人的高度1.7m,放在一起,人的高度几乎可以被忽略,所以为了方便比较,缩小他们的差距,但又能看出二者的大小关系,可以找一个方法进行转换。

另外,在多分类预测时,比如:一张图,要预测它是猫,或是狗,或是人,或是其它什么,每个分类都有一个预测的概率,比如是猫的概率是0.7,狗的概率是0.1,人的概率是0.2... , 概率通常是0到1之间的数字,如果我们算出的结果,不在这个范围,比如:700,10,2 ,甚至负数,这样就需要找个方法,将其转换成0-1之间的概率小数,而且通常为了满足统计分布,这些概率的和,应该是1。

最常用的处理方法,就是softmax,原理如上图(网上淘来的)。

类似的softmax(1)=0.12,softmax(-3)=0,这个方法在数学上没毛病,但是在实际运用中,如果目标值x很大,比如10000,那e的10000次方,很可能超出编程语言的表示范围,所以通常做softmax前,要对数据做一下预处理(比如:对于分类预测,最简单的办法,所有训练集整体按比例缩小)

二、信息熵

热力学中的热熵是表示分子状态混乱程度的物理量,而且还有一个所谓『熵增原理』,即:宇宙中的熵总是增加的,换句话说,分子状态总是从有序变成无序,热量总是从高温部分向低温部分传递。 香农借用了这个概念,用信息熵来描述信源的不确定度。

简单点说,一个信息源越不确定,里面蕴含的信息量越大。举个例子:吴京《战狼2》大获成功后,说要续拍《战狼3》,但是没说谁当女主角,于是就有各种猜测,各种可能性,即:信息量很大。但是没过多久,吴京宣布女主角确定后,大家就不用再猜测女主角了,信息量相比就没这么大了。

这个例子中,每种猜测的可能性其实就是概率,而信息量如何衡量,可以用下面的公式来量化计算,算出来的值即信息熵:

这里p为概率,最后算出来的结果通常以bit为单位。

举例:拿计算机领域最常现的编码问题来说,如果有A、B、C、D这四个字符组成的内容,每个字符出现的概率都是1/4,即概率分布为{1/4,1/4,1/4,1/4},设计一个最短的编码方案来表示一组数据,套用刚才的公式:

即:2个bit,其实不用算也能想明白,如果第1位0表示A,1表示B;第2位0表示C,1表示D,2位编码搞定。

如果概率变了,比如A、B、C、D出现的概率是{1,1,1/2,1/2},即:每次A、B必然出现,C、D出现机会各占一半,这样只要1位就可以了。1表示C,0表示D,因为AB必然出现,不用表示都知道肯定要附加上AB,套用公式算出来的结果也是如此。

三、交叉熵

这是公式定义,x、y都是表示概率分布(注:也有很多文章喜欢用p、q来表示),这个东西能干嘛呢?

假设x是正确的概率分布,而y是我们预测出来的概率分布,这个公式算出来的结果,表示y与正确答案x之间的错误程度(即:y错得有多离谱),结果值越小,表示y越准确,与x越接近。

比如:

x的概率分布为:{1/4 ,1/4,1/4,1/4},现在我们通过机器学习,预测出来二组值:

y1的概率分布为 {1/4 , 1/2 , 1/8 , 1/8}

y2的概率分布为 {1/4 , 1/4 , 1/8 , 3/8}

从直觉上看,y2分布中,前2项都100%预测对了,而y1只有第1项100%对,所以y2感觉更准确,看看公式算下来,是不是符合直觉:

对比结果,H(x,y1)算出来的值为9/4,而H(x,y2)的值略小于9/4,根据刚才的解释,交叉熵越小,表示这二个分布越接近,所以机器学习中,经常拿交叉熵来做为损失函数(loss function)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容