文科生学Python系列15:泰坦尼克数据1

第八课:案例分析 - 泰坦尼克数据

本节课将重点分析泰坦尼克号沉船事故,我们将探索是什么因素决定了最后是否生还

我们将将前面课程所学过的知识点融会贯通,举一反三

新增知识点:

       缺失值处理:pandas中的fillna()方法

       数据透视表:pandas中的pivot_table函数

数据分析的流程

问题:数据分析的核心是问题,提出一个有价值的问题就像瞄准了正确的靶心,才能使后续的动作变得有意义。

数据采集:有了问题之后就要收集原始的数据。但是数据来源丰富多样,格式不尽相同,所以需要进行下一步——

数据清洗:清洗这些格式多样的数据,纠正其中可能的错误。这个步骤比较繁杂,占整个过程的工作量比例较大,却是整个分析流程必不可少的环节。

数据探索:这时候一般会用到统计和可视化的方法进行分析,对数据有全面的认识,为后续的进一步分析做铺垫。

建模分析:这一步经常用到机器学习/数据挖掘的算法(此课不做介绍)。

交流结果:通过报告或者可视化图表的形式,展示结论,并与他人和交流。

决策:通过交流进行决策。

整个数据分析的流程就是从问题到决策的过程。但是真实的情况往往不会那么顺利。比如在数据采集/清洗和探索的过程中,就会进行来回倒腾。就像在探索的时候发现数据支撑不够,要到前面一个步骤进行更多的采集和清洗。又像有时候我们只有数据没有具体的问题,通过采集/清洗和探索这些步骤之后,对数据有了更深的认识,这时可以进一步提出更有意义的问题了。

我们第八课的课程里面,也会用这样一个流程,对数据进行处理。

我们今天的问题是:哪些问题会影响最后的生还概率。


泰坦尼克号背景介绍

泰坦尼克号是一艘奥林匹克级邮轮,于1912年4月首航时撞上冰山后沉没。泰坦尼克号由位于北爱尔兰贝尔法斯特的哈兰·沃尔夫船厂兴建,是当时最大的客运轮船,由于其规模相当一艘现代航空母舰,因而号称“上帝也沉没不了的巨型邮轮”。在泰坦尼克号的首航中,从英国南安普敦出发,途经法国瑟堡-奥克特维尔以及爱尔兰昆士敦,计划横渡大西洋前往美国纽约市。但因为人为错误,于1912年4月14日船上时间夜里11点40分撞上冰山;2小时40分钟后,即4月15日凌晨02点20分,船裂成两半后沉入大西洋,死亡人数超越1500人,堪称20世纪最大的海难事件,同时也是最广为人知的海难之一。

当时报道

整份数据分为数值变量和分类变量,这边着重分一下,因为它们在后面的使用也是不一样的。因为我们今天案例主题是 什么因素会影响生还,所以这份数据里面“survival” 这一列的数据是需要重点分析的,然后会对分类变量 “Pclass” 舱位和 “Sex” 性别,还有数值变量 “Age” 年龄,对生还情况的影响。

在里面可以看到很多NaN的显示,表示此处是缺失值。第二部分我们将着重来看,怎么来处理这些缺失值。


1、数据导入和观察

读取常用包

然后导入这次课程的数据,csv格式的文件。用 Pandas 的 csv 的读取方式来读取,赋值于 titanic_df 这个数据数据变量中。我在前面的文章也不止讲了3遍怎么导入数据了,讨论区的答疑整理几乎每一次都有人问数据导入的问题,所以到今天要是还不会导入数据的,可以翻我前面的文章。

导入并读取数据

数据字段说明:

PassengerId: 乘客的id

Survival: 是否幸存 0 = No, 1 = Yes

Pclass: 舱位 class 1 = 1st, 2 = 2nd, 3 = 3rd

Name: 姓名

Sex: 性别

Age: 年龄

SibSp: 船上兄弟姐妹以及配偶的个数

Parch: 船上父母以及者子女的个数

Ticket: 船票号码

Fare: 票价

Cabin: 船舱号码

Embarked: 登船码头 C = Cherbourg, Q = Queenstown, S = Southampton

变量类型

数值变量:Age, SibSp, Parch, 和Fare。

分类变量:Pcalss, Sex, Cabin, 和Embarked。Survived是结果。

下面我们 describe 函数来观察数值变量和分类变量。


数据的统计描述

数值变量

describe函数查看部分变量的分布

用方括号的形式,这四个参数重新组建一个 DataFrame,用describe 进行观察。运行得到四列数据的统计值。

count表示的是非空的数值个数。因为一行数据统计出来的结果都是891,只有 Age 是714,所以我们从这份数据可以观察到,Age这列数据是有缺失值的。下面的是一些统计量,mean 代表平均值,std 是标准差,也就是数据相对于均值的波动情况。min 是最小值,max 是最大值,25%50%75% 分别是这份数据的四分位数。

通过这份 describe 函数,我们可以对整份数据有大体的认识。比如从年龄那一列看,平均年龄是29.6岁,标准差是14.5,最小的年龄是0.42,最大的80岁,年龄的中位数是28岁。因为 Survived 是0-1变量,所以均值就是幸存人数的百分比,这个用法非常有用,也就是 Survivied 这列数据,由于生还与否是用 0 和 1 来进行表达,所以这里的0.38代表的是生还率。这个看起来很好用啊!

同样的,我们可以用describe来看分类变量的数据。但是要是直接使用,这里显示的也只能是数据,所以用到了 include=[ np.object ] 这个参数,表示把数据里面不是数值的可以用字符串的形式表达出来。


使用 include=[np.object] 来查看分类变量

count 表示非空数值的个数。unique 表示非重复数的个数,比如 name在这里的非重复数是891,那么和上面的非空数值对比,就知道是没有重名的人在里面。top 表示最高频的一个词,在性别 sex 中表示的是男性比女性多。freq 代表的是上面面最高频的数量,这里告诉我们男性出现次数最多,有577次。所以我们在这个表格可以看到,添加了 include=[ np.object ] 这个参数之后,用 describe 函数不仅能表示数值类的函数,也能表达字符类的函数。


不同舱位的分布情况是怎样的呢?

我们通过这个例子来复习 value_counts 和 group_by

value_counts频数统计

取到舱位这一批数据,然后用到 value_counts( ),因为它默认是从小到大排列的,所以可以看到三等舱的人最多。

为了求到相应的占比,我们可以除以相应的总量,用 len( )函数,然后可以看到三等舱的人数占了55%。

查看不同舱位的分布

这是用 value_counts 使用的第一种方法,下面还有另一种方法:group_by。

titanic_df.groupby('Pclass').agg('size')

将数据按舱位来分组,分组之后在计算每一组数据的大小。这里用列名 Pclass,代表此处是用舱名来分类的,然后使用聚合函数agg,用的是 size ,是用来计算分组之后的数据大小的。同样我们可以得到每一个舱位的人数。

同样需要得到相应的占比,也是除以 len( tatanic_df )

titanic_df.groupby('Pclass').agg('size')/len(titanic_df)

要是想要让数据从大到小进行排序,我们用的是 sort_values 这个方法进行操作:

sort_values 将结果排序

注意哦,这里是先把前面的内容用圆括号扩起来,代表这里的优先级更高,然后再使用 sort_values。后面需要设置参数 =False,因为此处是默认从小到大排列的。

所以这两种方法使用下来,能看出方法1是简单一点的,有默认排序功能,方法2还需要语句来设定。啊,我这种懒人!


作业8-1:

查看Embarked(登船码头)人数分布的百分比


第八课的这篇文章我码到现在,都是在用以前的知识点来进行操作的。下一篇文章将会有新的知识点 “ 缺失值处理:pandas中的fillna()方法 ” 和 “ 数据透视表:pandas中的pivot_table函数 ”

老师在GitHub 预告的,我这两天继续更新!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容