Faster R-CNN(Tensorflow版) 训练自己的数据集需要修改的地方。皮肤病相关的数据集

我使用的代码链接在这里 https://github.com/smallcorgi/Faster-RCNN_TF
我处理自己数据的标记工具在这里 https://github.com/tzutalin/labelImg

为了最小程度的修改源代码,我把自己的数据处理成和 VOC2007 文件格式一模一样的结构。这样,只需要修改 classes 里的类别就可以了,路径的问题完全不用管。

修改的文件路径

/home/deep/jcx/Faster-RCNN_TF/lib/datasets/pascal_voc.py
修改为自己数据的类

pascal_voc.py

/home/deep/jcx/Faster-RCNN_TF/lib/networks/VGGnet_train.py
修改类的个数

VGGnet_train.py

/home/deep/jcx/Faster-RCNN_TF/lib/networks/VGGnet_test.py
修改类的个数

VGGnet_test.py

以上就是我修改的所有地方,简单吧 :D

训练我们的数据

训练前要把官方的数据替换掉,如果你拿原始VOC数据训练过,还需要把load的数据和模型删掉。

需要删除这两个目录下的文件:

/home/deep/jcx/Faster-RCNN_TF/data/cache
/home/deep/jcx/Faster-RCNN_TF/output/faster_rcnn_end2end

开始训练

首先要到根目录 Faster-RCNN_TF
然后到lib目录下执行:

export PATH=$PATH:/usr/local/cuda-8.0/bin/
make
退回到Faster-RCNN_TF执行:
./experiments/scripts/faster_rcnn_end2end.sh gpu 0 VGG16 pascal_voc

demo.py

★注意:训练到最后会报错,提示 --weights: expected one argument, 这时候需要添加我们训练好的模型路径。在训练阶段。

开始测试

执行test_net.py 并添加了--weights 的参数。
执行前查看 /home/deep/jcx/Faster-RCNN_TF/data/VOCdevkit2007/annotations_cache/annots.pkl 的缓存文件是不是清空的。

python ./tools/test_net.py --device gpu --device_id 0 --weights /home/deep/jcx/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt --imdb voc_2007_test --cfg experiments/cfgs/faster_rcnn_end2end.yml --network VGGnet_test

使用 demo.py 检测从网上找到的相关皮肤病图片

直接用模型对相关图片进行目标检测
首先要把 demo.py 文件里的 CLASSES 要与之前修改的类别保持一致
/home/deep/jcx/Faster-RCNN_TF/tools
在文件根目录下面执行此命令,开始生成结果:

python ./tools/demo.py --model /home/deep/jcx/Faster-RCNN_TF/output/faster_rcnn_end2end/voc_2007_trainval/VGGnet_fast_rcnn_iter_70000.ckpt

保存标记好的图片

demo.py 里添加我们要保存图片的路径

demo.py.png

结果展示

疣1.jpg

疣2.jpg

疣29.jpg

疣35.jpg
疣45.jpg
疣101.jpg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容