Read Caffe, Class: Blob

在介绍caffe的基石Blob之前,我们先看下与Blob非常相关的在caffe.proto中定义的BlobProto对象。

message BlobProto {
  optional BlobShape shape = 7; 
  repeated float data = 5 [packed = true];
  repeated float diff = 6 [packed = true];
  repeated double double_data = 8 [packed = true];
  repeated double double_diff = 9 [packed = true];

  // 4D dimensions -- deprecated.  Use "shape" instead.
  optional int32 num = 1 [default = 0];
  optional int32 channels = 2 [default = 0];
  optional int32 height = 3 [default = 0];
  optional int32 width = 4 [default = 0];
}

BlobProto的定义就可以看出这个玩意儿是存储数据单元的,可以看到这个玩意儿其实就是定义一个超立方体,中间包含了数据和差(用来计算残差反传之类的)。那么在googleprotobuffer官网给出的文档强烈建议不要使用BlobProto来进行继承,虽然它是一个类,似乎会出什么问题,这一部分有心者去研究一下,,,,

那么我们先来看下Blob对象中将会使用的SyncedMemory是个啥吧,

#ifndef CAFFE_SYNCEDMEM_HPP_
#define CAFFE_SYNCEDMEM_HPP_

#include <cstdlib>

#include "caffe/common.hpp"

namespace caffe {

// If CUDA is available and in GPU mode, host memory will be allocated pinned,
// using cudaMallocHost. It avoids dynamic pinning for transfers (DMA).
// The improvement in performance seems negligible in the single GPU case,
// but might be more significant for parallel training. Most importantly,
// it improved stability for large models on many GPUs.
inline void CaffeMallocHost(void** ptr, size_t size, bool* use_cuda) {
#ifndef CPU_ONLY
  if (Caffe::mode() == Caffe::GPU) {
    CUDA_CHECK(cudaMallocHost(ptr, size));
    *use_cuda = true;
    return;
  }
#endif
  *ptr = malloc(size);
  *use_cuda = false;
  CHECK(*ptr) << "host allocation of size " << size << " failed";
}

inline void CaffeFreeHost(void* ptr, bool use_cuda) {
#ifndef CPU_ONLY
  if (use_cuda) {
    CUDA_CHECK(cudaFreeHost(ptr));
    return;
  }
#endif
  free(ptr);
}

首先定义mallocfree函数,这两个函数似乎是专门为cpu_ptr_来进行申请内存和释放内存的,cudaMallocHost函数是在有cuda情况下推荐使用的主机上的申请内存方法,此方法可以加快数据传输速度。


/**
 * @brief Manages memory allocation and synchronization between the host (CPU)
 *        and device (GPU).
 *
 * TODO(dox): more thorough description.
 */
class SyncedMemory {
 public:
  SyncedMemory()
      : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(0), head_(UNINITIALIZED),
        own_cpu_data_(false), cpu_malloc_use_cuda_(false), own_gpu_data_(false),
        gpu_device_(-1) {}
  explicit SyncedMemory(size_t size)
      : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(size), head_(UNINITIALIZED),
        own_cpu_data_(false), cpu_malloc_use_cuda_(false), own_gpu_data_(false),
        gpu_device_(-1) {}
  ~SyncedMemory();
  const void* cpu_data();
  void set_cpu_data(void* data);
  const void* gpu_data();
  void set_gpu_data(void* data);
  void* mutable_cpu_data();
  void* mutable_gpu_data();
  enum SyncedHead { UNINITIALIZED, HEAD_AT_CPU, HEAD_AT_GPU, SYNCED };
  SyncedHead head() { return head_; }
  size_t size() { return size_; }

#ifndef CPU_ONLY
  void async_gpu_push(const cudaStream_t& stream);
#endif

 private:
  void to_cpu();
  void to_gpu();
  void* cpu_ptr_;
  void* gpu_ptr_;
  size_t size_;
  SyncedHead head_;
  bool own_cpu_data_;
  bool cpu_malloc_use_cuda_;
  bool own_gpu_data_;
  int gpu_device_;

  DISABLE_COPY_AND_ASSIGN(SyncedMemory);
};  // class SyncedMemory

}  // namespace caffe

#endif  // CAFFE_SYNCEDMEM_HPP_

接下来我们来看看cpp文件中具体的函数实现吧,,

#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

SyncedMemory::~SyncedMemory() {
  if (cpu_ptr_ && own_cpu_data_) {
    CaffeFreeHost(cpu_ptr_, cpu_malloc_use_cuda_);
  }

析构函数如果GPU的数据指针不为空,并且own_cpu_data_这个bool型的指示标志为true,那么就要进行释放操作。


#ifndef CPU_ONLY
  if (gpu_ptr_ && own_gpu_data_) {
    int initial_device;
    cudaGetDevice(&initial_device);
    if (gpu_device_ != -1) {
      CUDA_CHECK(cudaSetDevice(gpu_device_));
    }
    CUDA_CHECK(cudaFree(gpu_ptr_));
    cudaSetDevice(initial_device);
  }
#endif  // CPU_ONLY
}

这一部分无非是GPU部分的free,这些都是CUDA中的API,朋友们可以注意学习一下。


inline void SyncedMemory::to_cpu() {
  switch (head_) {
  case UNINITIALIZED:
    CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
    caffe_memset(size_, 0, cpu_ptr_);
    head_ = HEAD_AT_CPU;
    own_cpu_data_ = true;
    break;

这个函数作为作为一个辅助私有成员函数将实现数据在cpugpu之间的传递,其中有一个指示标志head_,这很类似于git中的文件头HEAD,它指向masterdevgithub之类的,它有几种状态:UNINTIALIZEDHEAD_AT_GPUHEAD_AT_CPUSYNCED这几种状态;当内存状态处于UNINITIALIZED状态时,用内联函数CaffeMallocHost来申请内存,并且通过caffe_memset将所有的内存赋值为0;

  case HEAD_AT_GPU:
#ifndef CPU_ONLY
    if (cpu_ptr_ == NULL) {
      CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
      own_cpu_data_ = true;
    }
    caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_);
    head_ = SYNCED;
#else
    NO_GPU;
#endif
    break;

当文件头位于gpu上时,通过caffe_gpu_memcpy函数来进行数据从gpucpu上的合并,并且将head_状态转换为SYNCED的状态;如果在预编译的时候有CPU_ONLY指令,那么就会报错NO_GPU,该宏定义在device_alternative.hpp中定义了。

  case HEAD_AT_CPU:
  case SYNCED:
    break;
  }
}

如果head_指示标志指向HEAD_AT_CPU或者SYNCED那么就说明在CPU上已经有内存中的东西了,并不需要再去进行操作了,因为这个函数的功能毕竟只是to cpu的功能罢了。。_


inline void SyncedMemory::to_gpu() {
#ifndef CPU_ONLY
  switch (head_) {
  case UNINITIALIZED:
    CUDA_CHECK(cudaGetDevice(&gpu_device_));
    CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
    caffe_gpu_memset(size_, 0, gpu_ptr_);
    head_ = HEAD_AT_GPU;
    own_gpu_data_ = true;
    break;

在整个内存并没有初始化的时候,对gpu初始化两个步骤,这是cuda中的api函数接口决定的,同时使用一个memset函数对内存初始化为0;

  case HEAD_AT_CPU:
    if (gpu_ptr_ == NULL) {
      CUDA_CHECK(cudaGetDevice(&gpu_device_));
      CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
      own_gpu_data_ = true;
    }
    caffe_gpu_memcpy(size_, cpu_ptr_, gpu_ptr_);
    head_ = SYNCED;
    break;

如果文件的头在cpu上,那么我们用memcpycpu上的东西复制到gpu,然后将状态设置为SYNCED

  case HEAD_AT_GPU:
  case SYNCED:
    break;
  }
#else
  NO_GPU;
#endif
}

const void* SyncedMemory::cpu_data() {
  to_cpu();
  return (const void*)cpu_ptr_;
}

在获取cpu的数据时,加入限定符const使得我们拿到的数据是不可更改的,这对于保护数据有着重要的作用。那么我们在获取数据之前需要将数据进行向cpu的转移,然后拿到这个指针即可。


void SyncedMemory::set_cpu_data(void* data) {
  CHECK(data);
  if (own_cpu_data_) {
    CaffeFreeHost(cpu_ptr_, cpu_malloc_use_cuda_);
  }
  cpu_ptr_ = data;
  head_ = HEAD_AT_CPU;
  own_cpu_data_ = false;
}

注意一下程序中所有的CHECK什么的啊都是glog中所带的api,可以用来检测程序中某个变量的值是否是你预想的。首先我们要检查输入的data是否是空的,如果是空的那么就是报错了;那么我们首先是释放掉原先的cpu中的内存数据,然后将新的内存的指针指向该输入数据指针,但是这里有一个细节需要注意,own_cpu_data_等于false,意味着并不用于cpu数据,因为这个数据是外部输入的,如果有条件我们可以在外部释放。


const void* SyncedMemory::gpu_data() {
#ifndef CPU_ONLY
  to_gpu();
  return (const void*)gpu_ptr_;
#else
  NO_GPU;
  return NULL;
#endif
}

如果我们需要拿到gpu_data,则需要预编译指令CPU_ONLY并没有定义,这样才能使用这个gpu的数据;否则我们将得到NULL值。


void SyncedMemory::set_gpu_data(void* data) {
#ifndef CPU_ONLY
  CHECK(data);
  if (own_gpu_data_) {
    int initial_device;
    cudaGetDevice(&initial_device);
    if (gpu_device_ != -1) {
      CUDA_CHECK(cudaSetDevice(gpu_device_));
    }
    CUDA_CHECK(cudaFree(gpu_ptr_));
    cudaSetDevice(initial_device);
  }
  gpu_ptr_ = data;
  head_ = HEAD_AT_GPU;
  own_gpu_data_ = false;
#else
  NO_GPU;
#endif
}

这个函数与cpu版本相似,也是首先CHECK数据,然后判断是否own_gpu_data_,如果是得话,那么我们就要将原先的数据清空,防止内存泄漏,然后将gpu_ptr_置成data这个数据指针,同样的我们并不拥有gpu数据,因为这个数据是从外部进来的。。大概是这个意思。。


void* SyncedMemory::mutable_cpu_data() {
  to_cpu();
  head_ = HEAD_AT_CPU;
  return cpu_ptr_;
}

这个是数据可以编辑版本的指针获取函数。注意这里一个细节,将head_设置为HEAD_AT_CPU是很有必要的,因为现在处于编辑状态。将它想象为一个带副本的可编辑文档,想象吧!


void* SyncedMemory::mutable_gpu_data() {
#ifndef CPU_ONLY
  to_gpu();
  head_ = HEAD_AT_GPU;
  return gpu_ptr_;
#else
  NO_GPU;
  return NULL;
#endif
}

cpu中的是一致的,也要注意一点这里返回的是void *类型的指针,它可以转化为任意类型的指针,这是有必要的。


#ifndef CPU_ONLY
void SyncedMemory::async_gpu_push(const cudaStream_t& stream) {
  CHECK(head_ == HEAD_AT_CPU);
  if (gpu_ptr_ == NULL) {
    CUDA_CHECK(cudaGetDevice(&gpu_device_));
    CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_));
    own_gpu_data_ = true;
  }
  const cudaMemcpyKind put = cudaMemcpyHostToDevice;
  CUDA_CHECK(cudaMemcpyAsync(gpu_ptr_, cpu_ptr_, size_, put, stream));
  // Assume caller will synchronize on the stream before use
  head_ = SYNCED;
}
#endif

}  // namespace caffe

好的,我们看完了基石是啥样的再来看看Blob对象是什么样的了哈哈哈哈哈。。。。

#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"

const int kMaxBlobAxes = 32;

这个参数规定了Blob最大维度;


namespace caffe {

/**
 * @brief A wrapper around SyncedMemory holders serving as the basic
 *        computational unit through which Layer%s, Net%s, and Solver%s
 *        interact.
 *
 * TODO(dox): more thorough description.
 */
template <typename Dtype>
class Blob {
 public:
  Blob()
       : data_(), diff_(), count_(0), capacity_(0) {}

这个默认的构造函数,恩,,就这样;

  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
  explicit Blob(const int num, const int channels, const int height,
      const int width);

这种写法已经不推荐了,,我估计是贾杨清同学当年留下来的?。。_

  explicit Blob(const vector<int>& shape);

  /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
  void Reshape(const int num, const int channels, const int height,
      const int width);
  /**
   * @brief Change the dimensions of the blob, allocating new memory if
   *        necessary.
   *
   * This function can be called both to create an initial allocation
   * of memory, and to adjust the dimensions of a top blob during Layer::Reshape
   * or Layer::Forward. When changing the size of blob, memory will only be
   * reallocated if sufficient memory does not already exist, and excess memory
   * will never be freed.
   *
   * Note that reshaping an input blob and immediately calling Net::Backward is
   * an error; either Net::Forward or Net::Reshape need to be called to
   * propagate the new input shape to higher layers.
   */
  void Reshape(const vector<int>& shape);
  void Reshape(const BlobShape& shape);
  void ReshapeLike(const Blob& other);
  inline string shape_string() const {
    ostringstream stream;
    for (int i = 0; i < shape_.size(); ++i) {
      stream << shape_[i] << " ";
    }
    stream << "(" << count_ << ")";
    return stream.str();
  }

前面几个Reshape函数我将在后面重点介绍,这个shape_string函数是一个显示函数,注意这里将函数限定为内联的,这将加快程序的执行速度。

  inline const vector<int>& shape() const { return shape_; }
  /**
   * @brief Returns the dimension of the index-th axis (or the negative index-th
   *        axis from the end, if index is negative).
   *
   * @param index the axis index, which may be negative as it will be
   *        "canonicalized" using CanonicalAxisIndex.
   *        Dies on out of range index.
   */
  inline int shape(int index) const {
    return shape_[CanonicalAxisIndex(index)];
  }

这两个重载了的函数返回这个Blobshape,其中第二个函数可以返回某个特定维度的长度,使用了CanonicalAxis,很好很python。。。

  inline int num_axes() const { return shape_.size(); }
  inline int count() const { return count_; }

  /**
   * @brief Compute the volume of a slice; i.e., the product of dimensions
   *        among a range of axes.
   *
   * @param start_axis The first axis to include in the slice.
   *
   * @param end_axis The first axis to exclude from the slice.
   */
  inline int count(int start_axis, int end_axis) const {
    CHECK_LE(start_axis, end_axis);
    CHECK_GE(start_axis, 0);
    CHECK_GE(end_axis, 0);
    CHECK_LE(start_axis, num_axes());
    CHECK_LE(end_axis, num_axes());
    int count = 1;
    for (int i = start_axis; i < end_axis; ++i) {
      count *= shape(i);
    }
    return count;
  }
  /**
   * @brief Compute the volume of a slice spanning from a particular first
   *        axis to the final axis.
   *
   * @param start_axis The first axis to include in the slice.
   */
  inline int count(int start_axis) const {
    return count(start_axis, num_axes());
  }

这四个函数都是计数的,num_axes计算多少个维度,这个维度不能超过32,这是宏定义中规定的。三个重载的count函数都是计算某个维度到某个维度的点数,可以想象成一个高维矩阵,,,


  /**
   * @brief Returns the 'canonical' version of a (usually) user-specified axis,
   *        allowing for negative indexing (e.g., -1 for the last axis).
   *
   * @param axis_index the axis index.
   *        If 0 <= index < num_axes(), return index.
   *        If -num_axes <= index <= -1, return (num_axes() - (-index)),
   *        e.g., the last axis index (num_axes() - 1) if index == -1,
   *        the second to last if index == -2, etc.
   *        Dies on out of range index.
   */
  inline int CanonicalAxisIndex(int axis_index) const {
    CHECK_GE(axis_index, -num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    CHECK_LT(axis_index, num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    if (axis_index < 0) {
      return axis_index + num_axes();
    }
    return axis_index;
  }

这个很类似于matlab或者python中的数组index的约定,如最后一个可以用-1来表示,就是这样;

  /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
  inline int num() const { return LegacyShape(0); }
  /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
  inline int channels() const { return LegacyShape(1); }
  /// @brief Deprecated legacy shape accessor height: use shape(2) instead.
  inline int height() const { return LegacyShape(2); }
  /// @brief Deprecated legacy shape accessor width: use shape(3) instead.
  inline int width() const { return LegacyShape(3); }
  inline int LegacyShape(int index) const {
    CHECK_LE(num_axes(), 4)
        << "Cannot use legacy accessors on Blobs with > 4 axes.";
    CHECK_LT(index, 4);
    CHECK_GE(index, -4);
    if (index >= num_axes() || index < -num_axes()) {
      // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
      // indexing) -- this special case simulates the one-padding used to fill
      // extraneous axes of legacy blobs.
      return 1;
    }
    return shape(index);
  }

这几个函数都是废弃了的函数,最好不要使用,caffe中推荐使用shape()函数来获取Blob的维度信息,注意看这个LegacyShape这个函数有一个if判断,这个很有意思,如果输入的indexout of range,但是num_axes()并没有超过4,所以就对高维赋值为1,这是一个传统哈哈,,,,,,


  inline int offset(const int n, const int c = 0, const int h = 0,
      const int w = 0) const {
    CHECK_GE(n, 0);
    CHECK_LE(n, num());
    CHECK_GE(channels(), 0);
    CHECK_LE(c, channels());
    CHECK_GE(height(), 0);
    CHECK_LE(h, height());
    CHECK_GE(width(), 0);
    CHECK_LE(w, width());
    return ((n * channels() + c) * height() + h) * width() + w;
  }

可以发现glog中的CHECK功能真是好用啊,我只能说这么多了


  inline int offset(const vector<int>& indices) const {
    CHECK_LE(indices.size(), num_axes());
    int offset = 0;
    for (int i = 0; i < num_axes(); ++i) {
      offset *= shape(i);
      if (indices.size() > i) {
        CHECK_GE(indices[i], 0);
        CHECK_LT(indices[i], shape(i));
        offset += indices[i];
      }
    }
    return offset;
  }

上面这两个offset函数都其实是辅助函数,下面这个offset函数使用了vector作为输入,它的维度可以少于blob的维度,这种情况下其他维度的坐标当做0处理,,所以其实有点歧义,推荐使用全部的坐标值,这样感觉意义会更加明确。

  /**
   * @brief Copy from a source Blob.
   *
   * @param source the Blob to copy from
   * @param copy_diff if false, copy the data; if true, copy the diff
   * @param reshape if false, require this Blob to be pre-shaped to the shape
   *        of other (and die otherwise); if true, Reshape this Blob to other's
   *        shape if necessary
   */
  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
      bool reshape = false);

这个CopyFrom函数待会儿咱们在cpp文件中进行研究


  inline Dtype data_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_data()[offset(n, c, h, w)];
  }

  inline Dtype diff_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_diff()[offset(n, c, h, w)];
  }

  inline Dtype data_at(const vector<int>& index) const {
    return cpu_data()[offset(index)];
  }

  inline Dtype diff_at(const vector<int>& index) const {
    return cpu_diff()[offset(index)];
  }

这几个函数都是输出cpu数据的,单点的


  inline const shared_ptr<SyncedMemory>& data() const {
    CHECK(data_);
    return data_;
  }

  inline const shared_ptr<SyncedMemory>& diff() const {
    CHECK(diff_);
    return diff_;
  }

这两个函数直接拿到datadiff的指针,这就是使用智能指针的好处出来了,不需要进行手动析构,如果是普通指针,我们在拿到它之后可以使用delete操作,这样就非常不安全了。


  const Dtype* cpu_data() const;
  void set_cpu_data(Dtype* data);
  const int* gpu_shape() const;
  const Dtype* gpu_data() const;
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();
  void Update();

这几个函数都是有关于数据的,包括了mutableunmutable版本的。

  void FromProto(const BlobProto& proto, bool reshape = true);
  void ToProto(BlobProto* proto, bool write_diff = false) const;

这两个就是非常重要的io接口了,它连接的是caffe.proto中定义的BlobProto类型,它用来存储数据,这非常关键。


  /// @brief Compute the sum of absolute values (L1 norm) of the data.
  Dtype asum_data() const;
  /// @brief Compute the sum of absolute values (L1 norm) of the diff.
  Dtype asum_diff() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the data.
  Dtype sumsq_data() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the diff.
  Dtype sumsq_diff() const;

  /// @brief Scale the blob data by a constant factor.
  void scale_data(Dtype scale_factor);
  /// @brief Scale the blob diff by a constant factor.
  void scale_diff(Dtype scale_factor);

这几个就是数学函数咯,自己看吧


  /**
   * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
   *        data_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's data_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareData(const Blob& other);
  /**
   * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
   *        diff_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's diff_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareDiff(const Blob& other);

这两个函数充分利用了boost开发的智能指针,完美,可以将这个指针指向其他blobSyncedMemory,同时自身的SyncedMemory就自动析构了,完美!


  bool ShapeEquals(const BlobProto& other);

 protected:
  shared_ptr<SyncedMemory> data_;
  shared_ptr<SyncedMemory> diff_;
  shared_ptr<SyncedMemory> shape_data_;
  vector<int> shape_;
  int count_;
  int capacity_;

  DISABLE_COPY_AND_ASSIGN(Blob);

这个保护成员中使用了boost中的shared_ptr,这个玩意儿在c++1X中已经是标准化了,这样就可以将data_这些成员当做一个普通的指针来使用,但是又不必担心释放问题

};  // class Blob

}  // namespace caffe

#endif  // CAFFE_BLOB_HPP_

来来来,看一下最后这个blob.cpp里面这些没有定义的非内联函数到底是怎么定义的,玛德这个程序500多行,

#include <climits>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
    const int width) {
  vector<int> shape(4);
  shape[0] = num;
  shape[1] = channels;
  shape[2] = height;
  shape[3] = width;
  Reshape(shape);
}

所有的Reshape函数都调用了Reshape( const vector<int> & )这个函数


template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
  CHECK_LE(shape.size(), kMaxBlobAxes);
  count_ = 1;
  shape_.resize(shape.size());
  if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
    shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
  }

来细细分析这个函数是怎么实现的,首先我们输入的vector的长度不能超过32,这是维度上的极限值,然后保护成员shape_要进行重新调整尺寸,这利用vector对象的resize方法即可实现;下面这个if语句非常关键,我的理解如下,当我们的shape_data_这个指针为空的时候,或者它的字节长度小于我们输入的shape中需要存储的int类型的维度的长度了。。。也就是说这个shape_data_指向的SyncedMemory对象是专门用来存储维度信息的,,然后呢,当这个玩意儿不够长的时候我们需要进行reset操作。

  int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());

shape_data_中的可操作的cpu数据指针拿出来;

  for (int i = 0; i < shape.size(); ++i) {
    CHECK_GE(shape[i], 0);

这个地方使用了CHECK_GE意味着,当shape[i]等于0时,count_等于0了,我们申请了size=0data_diff_,它们都指向了SyncedMemory的内存空间,所以~~~不错

    CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
    count_ *= shape[i];
    shape_[i] = shape[i];
    shape_data[i] = shape[i];
  }
  if (count_ > capacity_) {
    capacity_ = count_;
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }
}

在这里使用capacitycount_使得我们不需要重复回收内存,释放内存,减少开销。


template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
  CHECK_LE(shape.dim_size(), kMaxBlobAxes);
  vector<int> shape_vec(shape.dim_size());
  for (int i = 0; i < shape.dim_size(); ++i) {
    shape_vec[i] = shape.dim(i);
  }
  Reshape(shape_vec);
}

template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
  Reshape(other.shape());
}

注意这里在使用BlobShape的时候,使用了protobuffer的东西,注意它的求size的方法


template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
    const int width)
  // capacity_ must be initialized before calling Reshape
  : capacity_(0) {
  Reshape(num, channels, height, width);
}

template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
  // capacity_ must be initialized before calling Reshape
  : capacity_(0) {
  Reshape(shape);
}

两个构造函数,将capacity设置为为0,然后进行Reshape,哈哈哈哈,


template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
  CHECK(shape_data_);
  return (const int*)shape_data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->cpu_data();
}

template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
  CHECK(data);
  data_->set_cpu_data(data);
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->cpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->gpu_data();
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_gpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_gpu_data());
}

上面几个接口函数都是获取blob中的data或者diff数据,因为它们都是SyncedMemory类型的智能指针,所以直接使用它们的类方法来获取数据指针。


template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
  CHECK_EQ(count_, other.count());
  data_ = other.data();
}

template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
  CHECK_EQ(count_, other.count());
  diff_ = other.diff();
}

两个blob能共享数据的前提是两个blob具有相同的count_值,shared_ptr_在这个时候就体现出了优势,并不需要使用new来申请内存,它自动帮我们完成了这一切。


// The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }

template <typename Dtype>
void Blob<Dtype>::Update() {
  // We will perform update based on where the data is located.
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    // perform computation on CPU
    caffe_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->cpu_data()),
        static_cast<Dtype*>(data_->mutable_cpu_data()));
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    // perform computation on GPU
    caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->gpu_data()),
        static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
    NO_GPU;
#endif
    break;
  default:
    LOG(FATAL) << "Syncedmem not initialized.";
  }
}

计算参数blobupdate步骤,因为参数只能是浮点型,所以在开头将<int><unsigned int>类型设置为宏定义NOT_IMPLEMENTED,在这里面进行的计算是data - diff


template <> unsigned int Blob<unsigned int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
  if (!data_) { return 0; }

首先对data_这个智能指针进行判断,如果它为空,则不用费神去计算了,它计算出来的就是0咯,

  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_data());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_data(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return 0;
}

可以看到这里面head信息是非常重要的,同时要注意到cpugpu版本的计算asum函数并不相同,gpu版本需要输入一个Dtype的引用变量,通过这个引用变量来输出计算结果


template <> unsigned int Blob<unsigned int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_diff());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_diff(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
  return 0;
}

diff的操作与data是一模一样的,都是这个逻辑。


template <> unsigned int Blob<unsigned int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
  Dtype sumsq;
  const Dtype* data;
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = cpu_data();
    sumsq = caffe_cpu_dot(count_, data, data);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = gpu_data();
    caffe_gpu_dot(count_, data, data, &sumsq);
#else
    NO_GPU;
#endif
    break;
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
  Dtype sumsq;
  const Dtype* diff;
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = cpu_diff();
    sumsq = caffe_cpu_dot(count_, diff, diff);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = gpu_diff();
    caffe_gpu_dot(count_, diff, diff, &sumsq);
    break;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

datadiffsumsq的计算与之前是一样的,这是L2范数,在计算误差时是需要用到的


template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_data(int scale_factor) {
  NOT_IMPLEMENTED;
}

template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
  Dtype* data;
  if (!data_) { return; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = mutable_cpu_data();
    caffe_scal(count_, scale_factor, data);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = mutable_gpu_data();
    caffe_gpu_scal(count_, scale_factor, data);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
}

template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_diff(int scale_factor) {
  NOT_IMPLEMENTED;
}

template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
  Dtype* diff;
  if (!diff_) { return; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = mutable_cpu_diff();
    caffe_scal(count_, scale_factor, diff);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = mutable_gpu_diff();
    caffe_gpu_scal(count_, scale_factor, diff);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
}

这两个函数是将datadiff进行scale,这个函数是有必要的,比如我们在输入图像时可能需要将dataBlob进行缩放,可能从0-255缩小到0-1,这样就需要乘以一个比例因子,这在MNIST的数据使用中就用到了这个技巧。


template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
  if (other.has_num() || other.has_channels() ||
      other.has_height() || other.has_width()) {
    // Using deprecated 4D Blob dimensions --
    // shape is (num, channels, height, width).
    // Note: we do not use the normal Blob::num(), Blob::channels(), etc.
    // methods as these index from the beginning of the blob shape, where legacy
    // parameter blobs were indexed from the end of the blob shape (e.g., bias
    // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
    return shape_.size() <= 4 &&
           LegacyShape(-4) == other.num() &&
           LegacyShape(-3) == other.channels() &&
           LegacyShape(-2) == other.height() &&
           LegacyShape(-1) == other.width();
  }
  vector<int> other_shape(other.shape().dim_size());
  for (int i = 0; i < other.shape().dim_size(); ++i) {
    other_shape[i] = other.shape().dim(i);
  }
  return shape_ == other_shape;
}

这一段理解较为困难,不过想象一下,对于bias只有一个维度的情况下,其他维度都为1,其实是首先给出了width而不是num,对吧,,


template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
  if (source.count() != count_ || source.shape() != shape_) {
    if (reshape) {
      ReshapeLike(source);
    } else {
      LOG(FATAL) << "Trying to copy blobs of different sizes.";
    }
  }
  switch (Caffe::mode()) {
  case Caffe::GPU:
    if (copy_diff) {
      caffe_copy(count_, source.gpu_diff(),
          static_cast<Dtype*>(diff_->mutable_gpu_data()));
    } else {
      caffe_copy(count_, source.gpu_data(),
          static_cast<Dtype*>(data_->mutable_gpu_data()));
    }
    break;
  case Caffe::CPU:
    if (copy_diff) {
      caffe_copy(count_, source.cpu_diff(),
          static_cast<Dtype*>(diff_->mutable_cpu_data()));
    } else {
      caffe_copy(count_, source.cpu_data(),
          static_cast<Dtype*>(data_->mutable_cpu_data()));
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}

从一个现有的Blob中复制data或者diff,可以设置reshapetrue,这样会根据source blob的形状来重新为blob设置内存信息。


template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
  if (reshape) {
    vector<int> shape;
    if (proto.has_num() || proto.has_channels() ||
        proto.has_height() || proto.has_width()) {
      // Using deprecated 4D Blob dimensions --
      // shape is (num, channels, height, width).
      shape.resize(4);
      shape[0] = proto.num();
      shape[1] = proto.channels();
      shape[2] = proto.height();
      shape[3] = proto.width();
    } else {
      shape.resize(proto.shape().dim_size());
      for (int i = 0; i < proto.shape().dim_size(); ++i) {
        shape[i] = proto.shape().dim(i);
      }
    }
    Reshape(shape);
  } else {
    CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
  }

从一个BlobProto中复制数据第一重要的就是shape要匹配,如果并不匹配,那就需要reshape,否则会报错,

  // copy data
  Dtype* data_vec = mutable_cpu_data();
  if (proto.double_data_size() > 0) {
    CHECK_EQ(count_, proto.double_data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.double_data(i);
    }
  } else {
    CHECK_EQ(count_, proto.data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.data(i);
    }
  }
  if (proto.double_diff_size() > 0) {
    CHECK_EQ(count_, proto.double_diff_size());
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.double_diff(i);
    }
  } else if (proto.diff_size() > 0) {
    CHECK_EQ(count_, proto.diff_size());
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.diff(i);
    }
  }
}

复制数据的时候优先复制double类型的数据,如果没有,那就复制float类型的低精度的数据,这是非常合理的,同时包括diff也要复制。


template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_double_data();
  proto->clear_double_diff();
  const double* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_double_data(data_vec[i]);
  }
  if (write_diff) {
    const double* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_double_diff(diff_vec[i]);
    }
  }
}

template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_data();
  proto->clear_diff();
  const float* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_data(data_vec[i]);
  }
  if (write_diff) {
    const float* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_diff(diff_vec[i]);
    }
  }
}

在往BlobProto中写入数据时,这里实现了两个类型的模板函数的具体实现,doublefloat类型,这里主要是写两个东西,一个是shape,注意首先使用了protobuffer中提供的clear()函数来将shape中的数据清空,然后使用add_dim()方法来加入数据,当然首先是需要通过mutable_shape()方法来拿到可以操作的指针咯,,,这里面具体要参考protobuffer的内容


INSTANTIATE_CLASS(Blob);

给出floatdouble类型的具体化,通过一个#define,学习这种方式;

template class Blob<int>;
template class Blob<unsigned int>;

}  // namespace caffe
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容

  • Caffe GitHub页面 1. Caffe目录结构 data/用于存放下载的训练数据docs/ 帮助文档exa...
    sixfold_yuan阅读 1,668评论 3 14
  • 本文从CSDN上转移过来:http://blog.csdn.net/mounty_fsc/article/deta...
    沤江一流阅读 7,878评论 0 7
  • 第一章 Nginx简介 Nginx是什么 没有听过Nginx?那么一定听过它的“同行”Apache吧!Ngi...
    JokerW阅读 32,650评论 24 1,002
  • 他是驶进饿乡的东方稚儿,他斥责士大夫的文言统治,他全面推广百姓本位的白话。世情看得透,动员有主张,无文艺不阶级。自...
    道伊裘阅读 623评论 0 1
  • 朋友啊,冷寂如梦 事后我多次回想起我的举动,才能确定这真的是偶然。我只是单纯的转过身去,伸个懒腰,却看见了他。 这...
    吕驰然阅读 237评论 0 0