Mongodb多表关联查询$lookup

$lookup聚合中常见的操作符,可以对数据库中的未分片集合执行外部集合联接,以过滤“联接”集合中的文档以进行处理。

单连接条件的相等匹配

要在集合文档的字段与另一个集合的文档的字段之间执行相等匹配,$lookup具有以下语法:

{
   $lookup:
     {
       from: <collection to join>,
       localField: <field from the input documents>,
       foreignField: <field from the documents of the "from" collection>,
       as: <output array field>
     }
}

例子:
创建包含以下文档的集合orders:

db.orders.insert([
   { "_id" : 1, "item" : "almonds", "price" : 12, "quantity" : 2 },
   { "_id" : 2, "item" : "pecans", "price" : 20, "quantity" : 1 },
   { "_id" : 3  }
])

使用以下文档创建另一个集合inventory:

db.inventory.insert([
   { "_id" : 1, "sku" : "almonds", description: "product 1", "instock" : 120 },
   { "_id" : 2, "sku" : "bread", description: "product 2", "instock" : 80 },
   { "_id" : 3, "sku" : "cashews", description: "product 3", "instock" : 60 },
   { "_id" : 4, "sku" : "pecans", description: "product 4", "instock" : 70 },
   { "_id" : 5, "sku": null, description: "Incomplete" },
   { "_id" : 6 }
])

orders.iteminventory.sku,将ordersinventory集合关联在一起。

db.orders.aggregate([
   {
     $lookup:
       {
         from: "inventory",
         localField: "item",
         foreignField: "sku",
         as: "inventory_docs"
       }
  }
])

该操作返回以下文档:

{
   "_id" : 1,
   "item" : "almonds",
   "price" : 12,
   "quantity" : 2,
   "inventory_docs" : [
      { "_id" : 1, "sku" : "almonds", "description" : "product 1", "instock" : 120 }
   ]
}
{
   "_id" : 2,
   "item" : "pecans",
   "price" : 20,
   "quantity" : 1,
   "inventory_docs" : [
      { "_id" : 4, "sku" : "pecans", "description" : "product 4", "instock" : 70 }
   ]
}
{
   "_id" : 3,
   "inventory_docs" : [
      { "_id" : 5, "sku" : null, "description" : "Incomplete" },
      { "_id" : 6 }
   ]
}

联接集合条件和子查询

为了在两个集合之间执行不相关的子查询,并允许除单个相等匹配之外的其他联接条件,$lookup具有以下语法:

{
   $lookup:
     {
       from: <collection to join>,
       let: { <var_1>: <expression>, …, <var_n>: <expression> },
       pipeline: [ <pipeline to execute on the collection to join> ],
       as: <output array field>
     }
}

例子:
创建包含以下文档的集合orders:

db.orders.insert([
  { "_id" : 1, "item" : "almonds", "price" : 12, "ordered" : 2 },
  { "_id" : 2, "item" : "pecans", "price" : 20, "ordered" : 1 },
  { "_id" : 3, "item" : "cookies", "price" : 10, "ordered" : 60 }
])

使用以下文档创建另一个集合warehouses:

db.warehouses.insert([
  { "_id" : 1, "stock_item" : "almonds", warehouse: "A", "instock" : 120 },
  { "_id" : 2, "stock_item" : "pecans", warehouse: "A", "instock" : 80 },
  { "_id" : 3, "stock_item" : "almonds", warehouse: "B", "instock" : 60 },
  { "_id" : 4, "stock_item" : "cookies", warehouse: "B", "instock" : 40 },
  { "_id" : 5, "stock_item" : "cookies", warehouse: "A", "instock" : 80 }
])

将orders集合与warehouse集合类型分类(stock_item),库存数量是否足以满足 Order 数量的要求结合在一起

db.orders.aggregate([
   {
      $lookup:
         {
           from: "warehouses",
           let: { order_item: "$item", order_qty: "$ordered" },
           pipeline: [
              { $match:
                 { $expr:
                    { $and:
                       [
                         { $eq: [ "$stock_item",  "$$order_item" ] },
                         { $gte: [ "$instock", "$$order_qty" ] }
                       ]
                    }
                 }
              },
              { $project: { stock_item: 0, _id: 0 } }
           ],
           as: "stockdata"
         }
    }
])

{ "_id" : 1, "item" : "almonds", "price" : 12, "ordered" : 2,
   "stockdata" : [ { "warehouse" : "A", "instock" : 120 }, { "warehouse" : "B", "instock" : 60 } ] }
{ "_id" : 2, "item" : "pecans", "price" : 20, "ordered" : 1,
   "stockdata" : [ { "warehouse" : "A", "instock" : 80 } ] }
{ "_id" : 3, "item" : "cookies", "price" : 10, "ordered" : 60,
   "stockdata" : [ { "warehouse" : "A", "instock" : 80 } ] }
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容