正态分布

数学期望

  • 平均值:平均值一般是指算数平均值
  • 期望可以理解为加权平均值,权数是函数的密度.对于离散函数,E(x)=∑f(xi)xi
  • 这里指一维连续随机变量(多维连续变量也类似)
    • 随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。
    • 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性(不严格的说就是概率)的函数。probability density function,简称PDF
  • 均差:求每一个数与这个样本数列的数学平均值之间的差,称均差;
  • 方差:计算每一个差的平方,称方差;
  • 均方差:求它们的总和,再除以这个样本数列的项数得到均方差;
  • 标准方差:再开根号得到标准方差!

笛卡尔积

  • 设A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫做A与B的笛卡尔积,记作AxB.笛卡尔积的符号化为:A×B={(x,y)|x∈A∧y∈B}
  • 例如,A={a,b}, B={0,1,2},则
    A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
    B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}

样本空间

  • 随机事件E的所有基本结果组成的集合为E的样本空间。样本空间的元素称为样本点或基本事件。
  • 比如:设随机试验E为“抛一颗骰子,观察出现的点数”。那么E的样本空间 S:{1,2,3,4,5,6,}。
  • 有些实验有两个或多个可能的样本空间。例如,从52张扑克牌中随机抽出一张,一个可能的样本空间是数字(A到K),另外一个可能的样本空间是花色(黑桃,红桃,梅花,方块)。如果要完整地描述一张牌,就需要同时给出数字和花色,这时的样本空间可以通过构建上述两个样本空间的笛卡儿乘积来得到。
    • 样本空间
    • 样本点(基本事件)

[随机变量](./第二章 随机变量及其分布.pdf)(网络链接)

高斯函数

  • 一维高斯函数
  • 二维高斯函数

概率分布(百度百科)

  • 事件的概率表示了一次试验某一个结果发生的可能性大小。若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即必须知道随机试验的概率分布(probability distribution)
    • 离散型随机变量概率分布
      • 分布列
    • 连续型随机变量概率分布
      • 概率分布密度曲线
      • 概率分布密度函数

正太分布

  • 正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution)
  • 正态分布是一种很重要的连续型随机变量的概率分布。
  • 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,039评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,426评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,417评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,868评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,892评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,692评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,416评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,326评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,782评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,957评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,102评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,790评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,442评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,996评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,113评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,332评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,044评论 2 355

推荐阅读更多精彩内容